一、杂类

01 - int128 输出流自定义

2023-03-20

1
2
3
4
5
6
7
8
9
10
11
12
</details>
using i128 = __int128;

std::ostream &operator<<(std::ostream &os, i128 n) {
std::string s;
while (n) {
s += '0' + n % 10;
n /= 10;
}
std::reverse(s.begin(), s.end());
return os << s;
}

02 - 常用库函数重载

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
using i64 = long long;
using i128 = __int128;

i64 ceilDiv(i64 n, i64 m) {
if (n >= 0) {
return (n + m - 1) / m;
} else {
return n / m;
}
}

i64 floorDiv(i64 n, i64 m) {
if (n >= 0) {
return n / m;
} else {
return (n - m + 1) / m;
}
}

template<class T>
void chmax(T &a, T b) {
if (a < b) {
a = b;
}
}

i128 gcd(i128 a, i128 b) {
return b ? gcd(b, a % b) : a;
}

二、图与网络

01 - 强连通分量缩点(SCC)

2023-06-18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
struct SCC {
int n;
std::vector<std::vector<int>> adj;
std::vector<int> stk;
std::vector<int> dfn, low, bel;
int cur, cnt;

SCC() {}
SCC(int n) {
init(n);
}

void init(int n) {
this->n = n;
adj.assign(n, {});
dfn.assign(n, -1);
low.resize(n);
bel.assign(n, -1);
stk.clear();
cur = cnt = 0;
}

void addEdge(int u, int v) {
adj[u].push_back(v);
}

void dfs(int x) {
dfn[x] = low[x] = cur++;
stk.push_back(x);

for (auto y : adj[x]) {
if (dfn[y] == -1) {
dfs(y);
low[x] = std::min(low[x], low[y]);
} else if (bel[y] == -1) {
low[x] = std::min(low[x], dfn[y]);
}
}

if (dfn[x] == low[x]) {
int y;
do {
y = stk.back();
bel[y] = cnt;
stk.pop_back();
} while (y != x);
cnt++;
}
}

std::vector<int> work() {
for (int i = 0; i < n; i++) {
if (dfn[i] == -1) {
dfs(i);
}
}
return bel;
}
};

02 - 割边与割边缩点(EBCC)

2023-05-11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
std::set<std::pair<int, int>> E;

struct EBCC {
int n;
std::vector<std::vector<int>> adj;
std::vector<int> stk;
std::vector<int> dfn, low, bel;
int cur, cnt;

EBCC() {}
EBCC(int n) {
init(n);
}

void init(int n) {
this->n = n;
adj.assign(n, {});
dfn.assign(n, -1);
low.resize(n);
bel.assign(n, -1);
stk.clear();
cur = cnt = 0;
}

void addEdge(int u, int v) {
adj[u].push_back(v);
adj[v].push_back(u);
}

void dfs(int x, int p) {
dfn[x] = low[x] = cur++;
stk.push_back(x);

for (auto y : adj[x]) {
if (y == p) {
continue;
}
if (dfn[y] == -1) {
E.emplace(x, y);
dfs(y, x);
low[x] = std::min(low[x], low[y]);
} else if (bel[y] == -1 && dfn[y] < dfn[x]) {
E.emplace(x, y);
low[x] = std::min(low[x], dfn[y]);
}
}

if (dfn[x] == low[x]) {
int y;
do {
y = stk.back();
bel[y] = cnt;
stk.pop_back();
} while (y != x);
cnt++;
}
}

std::vector<int> work() {
dfs(0, -1);
return bel;
}

struct Graph {
int n;
std::vector<std::pair<int, int>> edges;
std::vector<int> siz;
std::vector<int> cnte;
};
Graph compress() {
Graph g;
g.n = cnt;
g.siz.resize(cnt);
g.cnte.resize(cnt);
for (int i = 0; i < n; i++) {
g.siz[bel[i]]++;
for (auto j : adj[i]) {
if (bel[i] < bel[j]) {
g.edges.emplace_back(bel[i], bel[j]);
} else if (i < j) {
g.cnte[bel[i]]++;
}
}
}
return g;
}
};

03 - 二分图最大权匹配(MaxAssignment 基于KM)【久远】

2022-04-10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
template<class T>
struct MaxAssignment {
public:
T solve(int nx, int ny, std::vector<std::vector<T>> a) {
assert(0 <= nx && nx <= ny);
assert(int(a.size()) == nx);
for (int i = 0; i < nx; ++i) {
assert(int(a[i].size()) == ny);
for (auto x : a[i])
assert(x >= 0);
}

auto update = [&](int x) {
for (int y = 0; y < ny; ++y) {
if (lx[x] + ly[y] - a[x][y] < slack[y]) {
slack[y] = lx[x] + ly[y] - a[x][y];
slackx[y] = x;
}
}
};

costs.resize(nx + 1);
costs[0] = 0;
lx.assign(nx, std::numeric_limits<T>::max());
ly.assign(ny, 0);
xy.assign(nx, -1);
yx.assign(ny, -1);
slackx.resize(ny);
for (int cur = 0; cur < nx; ++cur) {
std::queue<int> que;
visx.assign(nx, false);
visy.assign(ny, false);
slack.assign(ny, std::numeric_limits<T>::max());
p.assign(nx, -1);

for (int x = 0; x < nx; ++x) {
if (xy[x] == -1) {
que.push(x);
visx[x] = true;
update(x);
}
}

int ex, ey;
bool found = false;
while (!found) {
while (!que.empty() && !found) {
auto x = que.front();
que.pop();
for (int y = 0; y < ny; ++y) {
if (a[x][y] == lx[x] + ly[y] && !visy[y]) {
if (yx[y] == -1) {
ex = x;
ey = y;
found = true;
break;
}
que.push(yx[y]);
p[yx[y]] = x;
visy[y] = visx[yx[y]] = true;
update(yx[y]);
}
}
}
if (found)
break;

T delta = std::numeric_limits<T>::max();
for (int y = 0; y < ny; ++y)
if (!visy[y])
delta = std::min(delta, slack[y]);
for (int x = 0; x < nx; ++x)
if (visx[x])
lx[x] -= delta;
for (int y = 0; y < ny; ++y) {
if (visy[y]) {
ly[y] += delta;
} else {
slack[y] -= delta;
}
}
for (int y = 0; y < ny; ++y) {
if (!visy[y] && slack[y] == 0) {
if (yx[y] == -1) {
ex = slackx[y];
ey = y;
found = true;
break;
}
que.push(yx[y]);
p[yx[y]] = slackx[y];
visy[y] = visx[yx[y]] = true;
update(yx[y]);
}
}
}

costs[cur + 1] = costs[cur];
for (int x = ex, y = ey, ty; x != -1; x = p[x], y = ty) {
costs[cur + 1] += a[x][y];
if (xy[x] != -1)
costs[cur + 1] -= a[x][xy[x]];
ty = xy[x];
xy[x] = y;
yx[y] = x;
}
}
return costs[nx];
}
std::vector<int> assignment() {
return xy;
}
std::pair<std::vector<T>, std::vector<T>> labels() {
return std::make_pair(lx, ly);
}
std::vector<T> weights() {
return costs;
}
private:
std::vector<T> lx, ly, slack, costs;
std::vector<int> xy, yx, p, slackx;
std::vector<bool> visx, visy;
};

04 - 一般图最大匹配(Graph 带花树算法)【久远】

2021-12-24

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
struct Graph {
int n;
std::vector<std::vector<int>> e;
Graph(int n) : n(n), e(n) {}
void addEdge(int u, int v) {
e[u].push_back(v);
e[v].push_back(u);
}
std::vector<int> findMatching() {
std::vector<int> match(n, -1), vis(n), link(n), f(n), dep(n);

// disjoint set union
auto find = [&](int u) {
while (f[u] != u)
u = f[u] = f[f[u]];
return u;
};

auto lca = [&](int u, int v) {
u = find(u);
v = find(v);
while (u != v) {
if (dep[u] < dep[v])
std::swap(u, v);
u = find(link[match[u]]);
}
return u;
};

std::queue<int> que;
auto blossom = [&](int u, int v, int p) {
while (find(u) != p) {
link[u] = v;
v = match[u];
if (vis[v] == 0) {
vis[v] = 1;
que.push(v);
}
f[u] = f[v] = p;
u = link[v];
}
};

// find an augmenting path starting from u and augment (if exist)
auto augment = [&](int u) {

while (!que.empty())
que.pop();

std::iota(f.begin(), f.end(), 0);

// vis = 0 corresponds to inner vertices, vis = 1 corresponds to outer vertices
std::fill(vis.begin(), vis.end(), -1);

que.push(u);
vis[u] = 1;
dep[u] = 0;

while (!que.empty()){
int u = que.front();
que.pop();
for (auto v : e[u]) {
if (vis[v] == -1) {

vis[v] = 0;
link[v] = u;
dep[v] = dep[u] + 1;

// found an augmenting path
if (match[v] == -1) {
for (int x = v, y = u, temp; y != -1; x = temp, y = x == -1 ? -1 : link[x]) {
temp = match[y];
match[x] = y;
match[y] = x;
}
return;
}

vis[match[v]] = 1;
dep[match[v]] = dep[u] + 2;
que.push(match[v]);

} else if (vis[v] == 1 && find(v) != find(u)) {
// found a blossom
int p = lca(u, v);
blossom(u, v, p);
blossom(v, u, p);
}
}
}

};

// find a maximal matching greedily (decrease constant)
auto greedy = [&]() {

for (int u = 0; u < n; ++u) {
if (match[u] != -1)
continue;
for (auto v : e[u]) {
if (match[v] == -1) {
match[u] = v;
match[v] = u;
break;
}
}
}
};

greedy();

for (int u = 0; u < n; ++u)
if (match[u] == -1)
augment(u);

return match;
}
};

05 - TwoSat(2-Sat)

2023-09-29

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
struct TwoSat {
int n;
std::vector<std::vector<int>> e;
std::vector<bool> ans;
TwoSat(int n) : n(n), e(2 * n), ans(n) {}
void addClause(int u, bool f, int v, bool g) {
e[2 * u + !f].push_back(2 * v + g);
e[2 * v + !g].push_back(2 * u + f);
}
bool satisfiable() {
std::vector<int> id(2 * n, -1), dfn(2 * n, -1), low(2 * n, -1);
std::vector<int> stk;
int now = 0, cnt = 0;
std::function<void(int)> tarjan = [&](int u) {
stk.push_back(u);
dfn[u] = low[u] = now++;
for (auto v : e[u]) {
if (dfn[v] == -1) {
tarjan(v);
low[u] = std::min(low[u], low[v]);
} else if (id[v] == -1) {
low[u] = std::min(low[u], dfn[v]);
}
}
if (dfn[u] == low[u]) {
int v;
do {
v = stk.back();
stk.pop_back();
id[v] = cnt;
} while (v != u);
++cnt;
}
};
for (int i = 0; i < 2 * n; ++i) if (dfn[i] == -1) tarjan(i);
for (int i = 0; i < n; ++i) {
if (id[2 * i] == id[2 * i + 1]) return false;
ans[i] = id[2 * i] > id[2 * i + 1];
}
return true;
}
std::vector<bool> answer() { return ans; }
};

06A - 最大流(Flow 旧版其一,整数应用)

2022-09-03

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
template<class T>
struct Flow {
const int n;
struct Edge {
int to;
T cap;
Edge(int to, T cap) : to(to), cap(cap) {}
};
std::vector<Edge> e;
std::vector<std::vector<int>> g;
std::vector<int> cur, h;
Flow(int n) : n(n), g(n) {}

bool bfs(int s, int t) {
h.assign(n, -1);
std::queue<int> que;
h[s] = 0;
que.push(s);
while (!que.empty()) {
const int u = que.front();
que.pop();
for (int i : g[u]) {
auto [v, c] = e[i];
if (c > 0 && h[v] == -1) {
h[v] = h[u] + 1;
if (v == t) {
return true;
}
que.push(v);
}
}
}
return false;
}

T dfs(int u, int t, T f) {
if (u == t) {
return f;
}
auto r = f;
for (int &i = cur[u]; i < int(g[u].size()); ++i) {
const int j = g[u][i];
auto [v, c] = e[j];
if (c > 0 && h[v] == h[u] + 1) {
auto a = dfs(v, t, std::min(r, c));
e[j].cap -= a;
e[j ^ 1].cap += a;
r -= a;
if (r == 0) {
return f;
}
}
}
return f - r;
}
void addEdge(int u, int v, T c) {
g[u].push_back(e.size());
e.emplace_back(v, c);
g[v].push_back(e.size());
e.emplace_back(u, 0);
}
T maxFlow(int s, int t) {
T ans = 0;
while (bfs(s, t)) {
cur.assign(n, 0);
ans += dfs(s, t, std::numeric_limits<T>::max());
}
return ans;
}
};

06B - 最大流(Flow 旧版其二,浮点数应用)

2022-04-09

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
template<class T>
struct Flow {
const int n;
struct Edge {
int to;
T cap;
Edge(int to, T cap) : to(to), cap(cap) {}
};
std::vector<Edge> e;
std::vector<std::vector<int>> g;
std::vector<int> cur, h;
Flow(int n) : n(n), g(n) {}

bool bfs(int s, int t) {
h.assign(n, -1);
std::queue<int> que;
h[s] = 0;
que.push(s);
while (!que.empty()) {
const int u = que.front();
que.pop();
for (int i : g[u]) {
auto [v, c] = e[i];
if (c > 0 && h[v] == -1) {
h[v] = h[u] + 1;
if (v == t) {
return true;
}
que.push(v);
}
}
}
return false;
}

T dfs(int u, int t, T f) {
if (u == t) {
return f;
}
auto r = f;
double res = 0;
for (int &i = cur[u]; i < int(g[u].size()); ++i) {
const int j = g[u][i];
auto [v, c] = e[j];
if (c > 0 && h[v] == h[u] + 1) {
auto a = dfs(v, t, std::min(r, c));
res += a;
e[j].cap -= a;
e[j ^ 1].cap += a;
r -= a;
if (r == 0) {
return f;
}
}
}
return res;
}
void addEdge(int u, int v, T c) {
g[u].push_back(e.size());
e.emplace_back(v, c);
g[v].push_back(e.size());
e.emplace_back(u, 0);
}
T maxFlow(int s, int t) {
T ans = 0;
while (bfs(s, t)) {
cur.assign(n, 0);
ans += dfs(s, t, 1E100);
}
return ans;
}
};

06C - 最大流(MaxFlow 新版)

2023-07-21

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
constexpr int inf = 1E9;
template<class T>
struct MaxFlow {
struct _Edge {
int to;
T cap;
_Edge(int to, T cap) : to(to), cap(cap) {}
};

int n;
std::vector<_Edge> e;
std::vector<std::vector<int>> g;
std::vector<int> cur, h;

MaxFlow() {}
MaxFlow(int n) {
init(n);
}

void init(int n) {
this->n = n;
e.clear();
g.assign(n, {});
cur.resize(n);
h.resize(n);
}

bool bfs(int s, int t) {
h.assign(n, -1);
std::queue<int> que;
h[s] = 0;
que.push(s);
while (!que.empty()) {
const int u = que.front();
que.pop();
for (int i : g[u]) {
auto [v, c] = e[i];
if (c > 0 && h[v] == -1) {
h[v] = h[u] + 1;
if (v == t) {
return true;
}
que.push(v);
}
}
}
return false;
}

T dfs(int u, int t, T f) {
if (u == t) {
return f;
}
auto r = f;
for (int &i = cur[u]; i < int(g[u].size()); ++i) {
const int j = g[u][i];
auto [v, c] = e[j];
if (c > 0 && h[v] == h[u] + 1) {
auto a = dfs(v, t, std::min(r, c));
e[j].cap -= a;
e[j ^ 1].cap += a;
r -= a;
if (r == 0) {
return f;
}
}
}
return f - r;
}
void addEdge(int u, int v, T c) {
g[u].push_back(e.size());
e.emplace_back(v, c);
g[v].push_back(e.size());
e.emplace_back(u, 0);
}
T flow(int s, int t) {
T ans = 0;
while (bfs(s, t)) {
cur.assign(n, 0);
ans += dfs(s, t, std::numeric_limits<T>::max());
}
return ans;
}

std::vector<bool> minCut() {
std::vector<bool> c(n);
for (int i = 0; i < n; i++) {
c[i] = (h[i] != -1);
}
return c;
}

struct Edge {
int from;
int to;
T cap;
T flow;
};
std::vector<Edge> edges() {
std::vector<Edge> a;
for (int i = 0; i < e.size(); i += 2) {
Edge x;
x.from = e[i + 1].to;
x.to = e[i].to;
x.cap = e[i].cap + e[i + 1].cap;
x.flow = e[i + 1].cap;
a.push_back(x);
}
return a;
}
};

07A - 费用流(MCFGraph 最小费用可行流)

2022-12-12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
struct MCFGraph {
struct Edge {
int v, c, f;
Edge(int v, int c, int f) : v(v), c(c), f(f) {}
};
const int n;
std::vector<Edge> e;
std::vector<std::vector<int>> g;
std::vector<i64> h, dis;
std::vector<int> pre;
bool dijkstra(int s, int t) {
dis.assign(n, std::numeric_limits<i64>::max());
pre.assign(n, -1);
std::priority_queue<std::pair<i64, int>, std::vector<std::pair<i64, int>>, std::greater<std::pair<i64, int>>> que;
dis[s] = 0;
que.emplace(0, s);
while (!que.empty()) {
i64 d = que.top().first;
int u = que.top().second;
que.pop();
if (dis[u] < d) continue;
for (int i : g[u]) {
int v = e[i].v;
int c = e[i].c;
int f = e[i].f;
if (c > 0 && dis[v] > d + h[u] - h[v] + f) {
dis[v] = d + h[u] - h[v] + f;
pre[v] = i;
que.emplace(dis[v], v);
}
}
}
return dis[t] != std::numeric_limits<i64>::max();
}
MCFGraph(int n) : n(n), g(n) {}
void addEdge(int u, int v, int c, int f) {
if (f < 0) {
g[u].push_back(e.size());
e.emplace_back(v, 0, f);
g[v].push_back(e.size());
e.emplace_back(u, c, -f);
} else {
g[u].push_back(e.size());
e.emplace_back(v, c, f);
g[v].push_back(e.size());
e.emplace_back(u, 0, -f);
}
}
std::pair<int, i64> flow(int s, int t) {
int flow = 0;
i64 cost = 0;
h.assign(n, 0);
while (dijkstra(s, t)) {
for (int i = 0; i < n; ++i) h[i] += dis[i];
int aug = std::numeric_limits<int>::max();
for (int i = t; i != s; i = e[pre[i] ^ 1].v) aug = std::min(aug, e[pre[i]].c);
for (int i = t; i != s; i = e[pre[i] ^ 1].v) {
e[pre[i]].c -= aug;
e[pre[i] ^ 1].c += aug;
}
flow += aug;
cost += i64(aug) * h[t];
}
return std::make_pair(flow, cost);
}
};

07B - 费用流(MCFGraph 最小费用最大流)

代码同上,但是需要注释掉建边限制。以下为参考:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
void addEdge(int u, int v, int c, int f) { // 可行流
if (f < 0) {
g[u].push_back(e.size());
e.emplace_back(v, 0, f);
g[v].push_back(e.size());
e.emplace_back(u, c, -f);
} else {
g[u].push_back(e.size());
e.emplace_back(v, c, f);
g[v].push_back(e.size());
e.emplace_back(u, 0, -f);
}
}
void addEdge(int u, int v, int c, int f) { // 最大流
g[u].push_back(e.size());
e.emplace_back(v, c, f);
g[v].push_back(e.size());
e.emplace_back(u, 0, -f);
}

08 - 树链剖分(HLD)

2023-08-31

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
struct HLD {
int n;
std::vector<int> siz, top, dep, parent, in, out, seq;
std::vector<std::vector<int>> adj;
int cur;

HLD() {}
HLD(int n) {
init(n);
}
void init(int n) {
this->n = n;
siz.resize(n);
top.resize(n);
dep.resize(n);
parent.resize(n);
in.resize(n);
out.resize(n);
seq.resize(n);
cur = 0;
adj.assign(n, {});
}
void addEdge(int u, int v) {
adj[u].push_back(v);
adj[v].push_back(u);
}
void work(int root = 0) {
top[root] = root;
dep[root] = 0;
parent[root] = -1;
dfs1(root);
dfs2(root);
}
void dfs1(int u) {
if (parent[u] != -1) {
adj[u].erase(std::find(adj[u].begin(), adj[u].end(), parent[u]));
}

siz[u] = 1;
for (auto &v : adj[u]) {
parent[v] = u;
dep[v] = dep[u] + 1;
dfs1(v);
siz[u] += siz[v];
if (siz[v] > siz[adj[u][0]]) {
std::swap(v, adj[u][0]);
}
}
}
void dfs2(int u) {
in[u] = cur++;
seq[in[u]] = u;
for (auto v : adj[u]) {
top[v] = v == adj[u][0] ? top[u] : v;
dfs2(v);
}
out[u] = cur;
}
int lca(int u, int v) {
while (top[u] != top[v]) {
if (dep[top[u]] > dep[top[v]]) {
u = parent[top[u]];
} else {
v = parent[top[v]];
}
}
return dep[u] < dep[v] ? u : v;
}

int dist(int u, int v) {
return dep[u] + dep[v] - 2 * dep[lca(u, v)];
}

int jump(int u, int k) {
if (dep[u] < k) {
return -1;
}

int d = dep[u] - k;

while (dep[top[u]] > d) {
u = parent[top[u]];
}

return seq[in[u] - dep[u] + d];
}

bool isAncester(int u, int v) {
return in[u] <= in[v] && in[v] < out[u];
}

int rootedParent(int u, int v) {
std::swap(u, v);
if (u == v) {
return u;
}
if (!isAncester(u, v)) {
return parent[u];
}
auto it = std::upper_bound(adj[u].begin(), adj[u].end(), v, [&](int x, int y) {
return in[x] < in[y];
}) - 1;
return *it;
}

int rootedSize(int u, int v) {
if (u == v) {
return n;
}
if (!isAncester(v, u)) {
return siz[v];
}
return n - siz[rootedParent(u, v)];
}

int rootedLca(int a, int b, int c) {
return lca(a, b) ^ lca(b, c) ^ lca(c, a);
}
};

三、数论、几何、多项式

01 - 快速幂

2023-10-09

1
2
3
4
5
6
7
8
9
int power(int a, i64 b, int p) {
int res = 1;
for (; b; b /= 2, a = 1LL * a * a % p) {
if (b % 2) {
res = 1LL * res * a % p;
}
}
return res;
}

02 - 欧拉筛

2023-08-29

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
std::vector<int> minp, primes;

void sieve(int n) {
minp.assign(n + 1, 0);
primes.clear();

for (int i = 2; i <= n; i++) {
if (minp[i] == 0) {
minp[i] = i;
primes.push_back(i);
}

for (auto p : primes) {
if (i * p > n) {
break;
}
minp[i * p] = p;
if (p == minp[i]) {
break;
}
}
}
}

03 - 莫比乌斯函数筛(莫比乌斯函数/反演)

2023-03-04

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
std::unordered_map<int, Z> fMu;

constexpr int N = 1E7;
std::vector<int> minp, primes;
std::vector<Z> mu;

void sieve(int n) {
minp.assign(n + 1, 0);
mu.resize(n);
primes.clear();

mu[1] = 1;
for (int i = 2; i <= n; i++) {
if (minp[i] == 0) {
mu[i] = -1;
minp[i] = i;
primes.push_back(i);
}

for (auto p : primes) {
if (i * p > n) {
break;
}
minp[i * p] = p;
if (p == minp[i]) {
break;
}
mu[i * p] = -mu[i];
}
}

for (int i = 1; i <= n; i++) {
mu[i] += mu[i - 1];
}
}


Z sumMu(int n) {
if (n <= N) {
return mu[n];
}
if (fMu.count(n)) {
return fMu[n];
}
if (n == 0) {
return 0;
}
Z ans = 1;
for (int l = 2, r; l <= n; l = r + 1) {
r = n / (n / l);
ans -= (r - l + 1) * sumMu(n / l);
}
return ans;
}

int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);

sieve(N);

int L, R;
std::cin >> L >> R;
L -= 1;

Z ans = 0;
for (int l = 1, r; l <= R; l = r + 1) {
r = R / (R / l);
if (l <= L) {
r = std::min(r, L / (L / l));
}

ans += (power(Z(2), R / l - L / l) - 1) * (sumMu(r) - sumMu(l - 1));
}

std::cout << ans << "\n";

return 0;
}

04 - 求解单个数的欧拉函数

2023-10-09

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
int phi(int n) {
int res = n;
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) {
while (n % i == 0) {
n /= i;
}
res = res / i * (i - 1);
}
}
if (n > 1) {
res = res / n * (n - 1);
}
return res;
}

05 - 扩展欧几里得(exGCD)

2023-10-09

1
2
3
4
5
6
7
8
9
int exgcd(int a, int b, int &x, int &y) {
if (!b) {
x = 1, y = 0;
return a;
}
int g = exgcd(b, a % b, y, x);
y -= a / b * x;
return g;
}

06 - 组合数(Comb, with. MInt & MLong)

2023-08-26

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
struct Comb {
int n;
std::vector<Z> _fac;
std::vector<Z> _invfac;
std::vector<Z> _inv;

Comb() : n{0}, _fac{1}, _invfac{1}, _inv{0} {}
Comb(int n) : Comb() {
init(n);
}

void init(int m) {
m = std::min(m, Z::getMod() - 1);
if (m <= n) return;
_fac.resize(m + 1);
_invfac.resize(m + 1);
_inv.resize(m + 1);

for (int i = n + 1; i <= m; i++) {
_fac[i] = _fac[i - 1] * i;
}
_invfac[m] = _fac[m].inv();
for (int i = m; i > n; i--) {
_invfac[i - 1] = _invfac[i] * i;
_inv[i] = _invfac[i] * _fac[i - 1];
}
n = m;
}

Z fac(int m) {
if (m > n) init(2 * m);
return _fac[m];
}
Z invfac(int m) {
if (m > n) init(2 * m);
return _invfac[m];
}
Z inv(int m) {
if (m > n) init(2 * m);
return _inv[m];
}
Z binom(int n, int m) {
if (n < m || m < 0) return 0;
return fac(n) * invfac(m) * invfac(n - m);
}
} comb;

07 - 二项式(Binomial 任意模数计算)

2023-08-22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
std::vector<std::pair<int, int>> factorize(int n) {
std::vector<std::pair<int, int>> factors;
for (int i = 2; static_cast<long long>(i) * i <= n; i++) {
if (n % i == 0) {
int t = 0;
for (; n % i == 0; n /= i)
++t;
factors.emplace_back(i, t);
}
}
if (n > 1)
factors.emplace_back(n, 1);
return factors;
}
constexpr int power(int base, i64 exp) {
int res = 1;
for (; exp > 0; base *= base, exp /= 2) {
if (exp % 2 == 1) {
res *= base;
}
}
return res;
}
constexpr int power(int base, i64 exp, int mod) {
int res = 1 % mod;
for (; exp > 0; base = 1LL * base * base % mod, exp /= 2) {
if (exp % 2 == 1) {
res = 1LL * res * base % mod;
}
}
return res;
}
int inverse(int a, int m) {
int g = m, r = a, x = 0, y = 1;
while (r != 0) {
int q = g / r;
g %= r;
std::swap(g, r);
x -= q * y;
std::swap(x, y);
}
return x < 0 ? x + m : x;
}
int solveModuloEquations(const std::vector<std::pair<int, int>> &e) {
int m = 1;
for (std::size_t i = 0; i < e.size(); i++) {
m *= e[i].first;
}
int res = 0;
for (std::size_t i = 0; i < e.size(); i++) {
int p = e[i].first;
res = (res + 1LL * e[i].second * (m / p) * inverse(m / p, p)) % m;
}
return res;
}
constexpr int N = 1E5;
class Binomial {
const int mod;
private:
const std::vector<std::pair<int, int>> factors;
std::vector<int> pk;
std::vector<std::vector<int>> prod;
static constexpr i64 exponent(i64 n, int p) {
i64 res = 0;
for (n /= p; n > 0; n /= p) {
res += n;
}
return res;
}
int product(i64 n, std::size_t i) {
int res = 1;
int p = factors[i].first;
for (; n > 0; n /= p) {
res = 1LL * res * power(prod[i].back(), n / pk[i], pk[i]) % pk[i] * prod[i][n % pk[i]] % pk[i];
}
return res;
}
public:
Binomial(int mod) : mod(mod), factors(factorize(mod)) {
pk.resize(factors.size());
prod.resize(factors.size());
for (std::size_t i = 0; i < factors.size(); i++) {
int p = factors[i].first;
int k = factors[i].second;
pk[i] = power(p, k);
prod[i].resize(std::min(N + 1, pk[i]));
prod[i][0] = 1;
for (int j = 1; j < prod[i].size(); j++) {
if (j % p == 0) {
prod[i][j] = prod[i][j - 1];
} else {
prod[i][j] = 1LL * prod[i][j - 1] * j % pk[i];
}
}
}
}
int operator()(i64 n, i64 m) {
if (n < m || m < 0) {
return 0;
}
std::vector<std::pair<int, int>> ans(factors.size());
for (int i = 0; i < factors.size(); i++) {
int p = factors[i].first;
int k = factors[i].second;
int e = exponent(n, p) - exponent(m, p) - exponent(n - m, p);
if (e >= k) {
ans[i] = std::make_pair(pk[i], 0);
} else {
int pn = product(n, i);
int pm = product(m, i);
int pd = product(n - m, i);
int res = 1LL * pn * inverse(pm, pk[i]) % pk[i] * inverse(pd, pk[i]) % pk[i] * power(p, e) % pk[i];
ans[i] = std::make_pair(pk[i], res);
}
}
return solveModuloEquations(ans);
}
};

08 - 素数测试与因式分解(Miller-Rabin & Pollard-Rho)

2023-05-16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
i64 mul(i64 a, i64 b, i64 m) {
return static_cast<__int128>(a) * b % m;
}
i64 power(i64 a, i64 b, i64 m) {
i64 res = 1 % m;
for (; b; b >>= 1, a = mul(a, a, m))
if (b & 1)
res = mul(res, a, m);
return res;
}
bool isprime(i64 n) {
if (n < 2)
return false;
static constexpr int A[] = {2, 3, 5, 7, 11, 13, 17, 19, 23};
int s = __builtin_ctzll(n - 1);
i64 d = (n - 1) >> s;
for (auto a : A) {
if (a == n)
return true;
i64 x = power(a, d, n);
if (x == 1 || x == n - 1)
continue;
bool ok = false;
for (int i = 0; i < s - 1; ++i) {
x = mul(x, x, n);
if (x == n - 1) {
ok = true;
break;
}
}
if (!ok)
return false;
}
return true;
}
std::vector<i64> factorize(i64 n) {
std::vector<i64> p;
std::function<void(i64)> f = [&](i64 n) {
if (n <= 10000) {
for (int i = 2; i * i <= n; ++i)
for (; n % i == 0; n /= i)
p.push_back(i);
if (n > 1)
p.push_back(n);
return;
}
if (isprime(n)) {
p.push_back(n);
return;
}
auto g = [&](i64 x) {
return (mul(x, x, n) + 1) % n;
};
i64 x0 = 2;
while (true) {
i64 x = x0;
i64 y = x0;
i64 d = 1;
i64 power = 1, lam = 0;
i64 v = 1;
while (d == 1) {
y = g(y);
++lam;
v = mul(v, std::abs(x - y), n);
if (lam % 127 == 0) {
d = std::gcd(v, n);
v = 1;
}
if (power == lam) {
x = y;
power *= 2;
lam = 0;
d = std::gcd(v, n);
v = 1;
}
}
if (d != n) {
f(d);
f(n / d);
return;
}
++x0;
}
};
f(n);
std::sort(p.begin(), p.end());
return p;
}

09 - 平面几何

2023-07-17

长度过长,点击查看
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
template<class T>
struct Point {
T x;
T y;
Point(T x_ = 0, T y_ = 0) : x(x_), y(y_) {}

template<class U>
operator Point<U>() {
return Point<U>(U(x), U(y));
}
Point &operator+=(Point p) & {
x += p.x;
y += p.y;
return *this;
}
Point &operator-=(Point p) & {
x -= p.x;
y -= p.y;
return *this;
}
Point &operator*=(T v) & {
x *= v;
y *= v;
return *this;
}
Point operator-() const {
return Point(-x, -y);
}
friend Point operator+(Point a, Point b) {
return a += b;
}
friend Point operator-(Point a, Point b) {
return a -= b;
}
friend Point operator*(Point a, T b) {
return a *= b;
}
friend Point operator*(T a, Point b) {
return b *= a;
}
friend bool operator==(Point a, Point b) {
return a.x == b.x && a.y == b.y;
}
friend std::istream &operator>>(std::istream &is, Point &p) {
return is >> p.x >> p.y;
}
friend std::ostream &operator<<(std::ostream &os, Point p) {
return os << "(" << p.x << ", " << p.y << ")";
}
};

template<class T>
T dot(Point<T> a, Point<T> b) {
return a.x * b.x + a.y * b.y;
}

template<class T>
T cross(Point<T> a, Point<T> b) {
return a.x * b.y - a.y * b.x;
}

template<class T>
T square(Point<T> p) {
return dot(p, p);
}

template<class T>
double length(Point<T> p) {
return std::sqrt(double(square(p)));
}

long double length(Point<long double> p) {
return std::sqrt(square(p));
}

template<class T>
struct Line {
Point<T> a;
Point<T> b;
Line(Point<T> a_ = Point<T>(), Point<T> b_ = Point<T>()) : a(a_), b(b_) {}
};

template<class T>
Point<T> rotate(Point<T> a) {
return Point(-a.y, a.x);
}

template<class T>
int sgn(Point<T> a) {
return a.y > 0 || (a.y == 0 && a.x > 0) ? 1 : -1;
}

template<class T>
bool pointOnLineLeft(Point<T> p, Line<T> l) {
return cross(l.b - l.a, p - l.a) > 0;
}

template<class T>
Point<T> lineIntersection(Line<T> l1, Line<T> l2) {
return l1.a + (l1.b - l1.a) * (cross(l2.b - l2.a, l1.a - l2.a) / cross(l2.b - l2.a, l1.a - l1.b));
}

template<class T>
bool pointOnSegment(Point<T> p, Line<T> l) {
return cross(p - l.a, l.b - l.a) == 0 && std::min(l.a.x, l.b.x) <= p.x && p.x <= std::max(l.a.x, l.b.x)
&& std::min(l.a.y, l.b.y) <= p.y && p.y <= std::max(l.a.y, l.b.y);
}

template<class T>
bool pointInPolygon(Point<T> a, std::vector<Point<T>> p) {
int n = p.size();
for (int i = 0; i < n; i++) {
if (pointOnSegment(a, Line(p[i], p[(i + 1) % n]))) {
return true;
}
}

int t = 0;
for (int i = 0; i < n; i++) {
auto u = p[i];
auto v = p[(i + 1) % n];
if (u.x < a.x && v.x >= a.x && pointOnLineLeft(a, Line(v, u))) {
t ^= 1;
}
if (u.x >= a.x && v.x < a.x && pointOnLineLeft(a, Line(u, v))) {
t ^= 1;
}
}

return t == 1;
}

// 0 : not intersect
// 1 : strictly intersect
// 2 : overlap
// 3 : intersect at endpoint
template<class T>
std::tuple<int, Point<T>, Point<T>> segmentIntersection(Line<T> l1, Line<T> l2) {
if (std::max(l1.a.x, l1.b.x) < std::min(l2.a.x, l2.b.x)) {
return {0, Point<T>(), Point<T>()};
}
if (std::min(l1.a.x, l1.b.x) > std::max(l2.a.x, l2.b.x)) {
return {0, Point<T>(), Point<T>()};
}
if (std::max(l1.a.y, l1.b.y) < std::min(l2.a.y, l2.b.y)) {
return {0, Point<T>(), Point<T>()};
}
if (std::min(l1.a.y, l1.b.y) > std::max(l2.a.y, l2.b.y)) {
return {0, Point<T>(), Point<T>()};
}
if (cross(l1.b - l1.a, l2.b - l2.a) == 0) {
if (cross(l1.b - l1.a, l2.a - l1.a) != 0) {
return {0, Point<T>(), Point<T>()};
} else {
auto maxx1 = std::max(l1.a.x, l1.b.x);
auto minx1 = std::min(l1.a.x, l1.b.x);
auto maxy1 = std::max(l1.a.y, l1.b.y);
auto miny1 = std::min(l1.a.y, l1.b.y);
auto maxx2 = std::max(l2.a.x, l2.b.x);
auto minx2 = std::min(l2.a.x, l2.b.x);
auto maxy2 = std::max(l2.a.y, l2.b.y);
auto miny2 = std::min(l2.a.y, l2.b.y);
Point<T> p1(std::max(minx1, minx2), std::max(miny1, miny2));
Point<T> p2(std::min(maxx1, maxx2), std::min(maxy1, maxy2));
if (!pointOnSegment(p1, l1)) {
std::swap(p1.y, p2.y);
}
if (p1 == p2) {
return {3, p1, p2};
} else {
return {2, p1, p2};
}
}
}
auto cp1 = cross(l2.a - l1.a, l2.b - l1.a);
auto cp2 = cross(l2.a - l1.b, l2.b - l1.b);
auto cp3 = cross(l1.a - l2.a, l1.b - l2.a);
auto cp4 = cross(l1.a - l2.b, l1.b - l2.b);

if ((cp1 > 0 && cp2 > 0) || (cp1 < 0 && cp2 < 0) || (cp3 > 0 && cp4 > 0) || (cp3 < 0 && cp4 < 0)) {
return {0, Point<T>(), Point<T>()};
}

Point p = lineIntersection(l1, l2);
if (cp1 != 0 && cp2 != 0 && cp3 != 0 && cp4 != 0) {
return {1, p, p};
} else {
return {3, p, p};
}
}

template<class T>
bool segmentInPolygon(Line<T> l, std::vector<Point<T>> p) {
int n = p.size();
if (!pointInPolygon(l.a, p)) {
return false;
}
if (!pointInPolygon(l.b, p)) {
return false;
}
for (int i = 0; i < n; i++) {
auto u = p[i];
auto v = p[(i + 1) % n];
auto w = p[(i + 2) % n];
auto [t, p1, p2] = segmentIntersection(l, Line(u, v));

if (t == 1) {
return false;
}
if (t == 0) {
continue;
}
if (t == 2) {
if (pointOnSegment(v, l) && v != l.a && v != l.b) {
if (cross(v - u, w - v) > 0) {
return false;
}
}
} else {
if (p1 != u && p1 != v) {
if (pointOnLineLeft(l.a, Line(v, u))
|| pointOnLineLeft(l.b, Line(v, u))) {
return false;
}
} else if (p1 == v) {
if (l.a == v) {
if (pointOnLineLeft(u, l)) {
if (pointOnLineLeft(w, l)
&& pointOnLineLeft(w, Line(u, v))) {
return false;
}
} else {
if (pointOnLineLeft(w, l)
|| pointOnLineLeft(w, Line(u, v))) {
return false;
}
}
} else if (l.b == v) {
if (pointOnLineLeft(u, Line(l.b, l.a))) {
if (pointOnLineLeft(w, Line(l.b, l.a))
&& pointOnLineLeft(w, Line(u, v))) {
return false;
}
} else {
if (pointOnLineLeft(w, Line(l.b, l.a))
|| pointOnLineLeft(w, Line(u, v))) {
return false;
}
}
} else {
if (pointOnLineLeft(u, l)) {
if (pointOnLineLeft(w, Line(l.b, l.a))
|| pointOnLineLeft(w, Line(u, v))) {
return false;
}
} else {
if (pointOnLineLeft(w, l)
|| pointOnLineLeft(w, Line(u, v))) {
return false;
}
}
}
}
}
}
return true;
}

template<class T>
std::vector<Point<T>> hp(std::vector<Line<T>> lines) {
std::sort(lines.begin(), lines.end(), [&](auto l1, auto l2) {
auto d1 = l1.b - l1.a;
auto d2 = l2.b - l2.a;

if (sgn(d1) != sgn(d2)) {
return sgn(d1) == 1;
}

return cross(d1, d2) > 0;
});

std::deque<Line<T>> ls;
std::deque<Point<T>> ps;
for (auto l : lines) {
if (ls.empty()) {
ls.push_back(l);
continue;
}

while (!ps.empty() && !pointOnLineLeft(ps.back(), l)) {
ps.pop_back();
ls.pop_back();
}

while (!ps.empty() && !pointOnLineLeft(ps[0], l)) {
ps.pop_front();
ls.pop_front();
}

if (cross(l.b - l.a, ls.back().b - ls.back().a) == 0) {
if (dot(l.b - l.a, ls.back().b - ls.back().a) > 0) {

if (!pointOnLineLeft(ls.back().a, l)) {
assert(ls.size() == 1);
ls[0] = l;
}
continue;
}
return {};
}

ps.push_back(lineIntersection(ls.back(), l));
ls.push_back(l);
}

while (!ps.empty() && !pointOnLineLeft(ps.back(), ls[0])) {
ps.pop_back();
ls.pop_back();
}
if (ls.size() <= 2) {
return {};
}
ps.push_back(lineIntersection(ls[0], ls.back()));

return std::vector(ps.begin(), ps.end());
}

10A - 静态凸包(with. Point)

2023-04-09

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
struct Point {
i64 x;
i64 y;
Point(i64 x = 0, i64 y = 0) : x(x), y(y) {}
};

bool operator==(const Point &a, const Point &b) {
return a.x == b.x && a.y == b.y;
}

Point operator+(const Point &a, const Point &b) {
return Point(a.x + b.x, a.y + b.y);
}

Point operator-(const Point &a, const Point &b) {
return Point(a.x - b.x, a.y - b.y);
}

i64 dot(const Point &a, const Point &b) {
return a.x * b.x + a.y * b.y;
}

i64 cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}

void norm(std::vector<Point> &h) {
int i = 0;
for (int j = 0; j < int(h.size()); j++) {
if (h[j].y < h[i].y || (h[j].y == h[i].y && h[j].x < h[i].x)) {
i = j;
}
}
std::rotate(h.begin(), h.begin() + i, h.end());
}

int sgn(const Point &a) {
return a.y > 0 || (a.y == 0 && a.x > 0) ? 0 : 1;
}

std::vector<Point> getHull(std::vector<Point> p) {
std::vector<Point> h, l;
std::sort(p.begin(), p.end(), [&](auto a, auto b) {
if (a.x != b.x) {
return a.x < b.x;
} else {
return a.y < b.y;
}
});
p.erase(std::unique(p.begin(), p.end()), p.end());
if (p.size() <= 1) {
return p;
}

for (auto a : p) {
while (h.size() > 1 && cross(a - h.back(), a - h[h.size() - 2]) <= 0) {
h.pop_back();
}
while (l.size() > 1 && cross(a - l.back(), a - l[l.size() - 2]) >= 0) {
l.pop_back();
}
l.push_back(a);
h.push_back(a);
}

l.pop_back();
std::reverse(h.begin(), h.end());
h.pop_back();
l.insert(l.end(), h.begin(), h.end());
return l;
}

10B - 静态凸包(with. std::complex)

2022-02-04

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
using Point = std::complex<i64>;

#define x real
#define y imag

auto dot(const Point &a, const Point &b) {
return (std::conj(a) * b).x();
}

auto cross(const Point &a, const Point &b) {
return (std::conj(a) * b).y();
}

auto rot(const Point &p) {
return Point(-p.y(), p.x());
}

auto complexHull(std::vector<Point> a) {
std::sort(a.begin(), a.end(), [&](auto a, auto b) {
if (a.x() != b.x()) {
return a.x() < b.x();
} else {
return a.y() < b.y();
}
});

std::vector<Point> l, h;

for (auto p : a) {
while (l.size() > 1 && cross(l.back() - l[l.size() - 2], p - l.back()) <= 0) {
l.pop_back();
}

while (h.size() > 1 && cross(h.back() - h[h.size() - 2], p - h.back()) >= 0) {
h.pop_back();
}

l.push_back(p);
h.push_back(p);
}

std::reverse(h.begin(), h.end());

h.insert(h.end(), l.begin() + 1, l.end() - 1);

return h;
}

int sgn(Point p) {
if (p.y() > 0 || (p.y() == 0 && p.x() < 0)) {
return 0;
} else {
return 1;
}
}

11A - 多项式相关(Poly, with. Z)

2023-02-06

长度过长,点击查看
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
std::vector<int> rev;
std::vector<Z> roots{0, 1};
void dft(std::vector<Z> &a) {
int n = a.size();

if (int(rev.size()) != n) {
int k = __builtin_ctz(n) - 1;
rev.resize(n);
for (int i = 0; i < n; i++) {
rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
}
}

for (int i = 0; i < n; i++) {
if (rev[i] < i) {
std::swap(a[i], a[rev[i]]);
}
}
if (int(roots.size()) < n) {
int k = __builtin_ctz(roots.size());
roots.resize(n);
while ((1 << k) < n) {
Z e = power(Z(3), (P - 1) >> (k + 1));
for (int i = 1 << (k - 1); i < (1 << k); i++) {
roots[2 * i] = roots[i];
roots[2 * i + 1] = roots[i] * e;
}
k++;
}
}
for (int k = 1; k < n; k *= 2) {
for (int i = 0; i < n; i += 2 * k) {
for (int j = 0; j < k; j++) {
Z u = a[i + j];
Z v = a[i + j + k] * roots[k + j];
a[i + j] = u + v;
a[i + j + k] = u - v;
}
}
}
}
void idft(std::vector<Z> &a) {
int n = a.size();
std::reverse(a.begin() + 1, a.end());
dft(a);
Z inv = (1 - P) / n;
for (int i = 0; i < n; i++) {
a[i] *= inv;
}
}
struct Poly {
std::vector<Z> a;
Poly() {}
explicit Poly(int size, std::function<Z(int)> f = [](int) { return 0; }) : a(size) {
for (int i = 0; i < size; i++) {
a[i] = f(i);
}
}
Poly(const std::vector<Z> &a) : a(a) {}
Poly(const std::initializer_list<Z> &a) : a(a) {}
int size() const {
return a.size();
}
void resize(int n) {
a.resize(n);
}
Z operator[](int idx) const {
if (idx < size()) {
return a[idx];
} else {
return 0;
}
}
Z &operator[](int idx) {
return a[idx];
}
Poly mulxk(int k) const {
auto b = a;
b.insert(b.begin(), k, 0);
return Poly(b);
}
Poly modxk(int k) const {
k = std::min(k, size());
return Poly(std::vector<Z>(a.begin(), a.begin() + k));
}
Poly divxk(int k) const {
if (size() <= k) {
return Poly();
}
return Poly(std::vector<Z>(a.begin() + k, a.end()));
}
friend Poly operator+(const Poly &a, const Poly &b) {
std::vector<Z> res(std::max(a.size(), b.size()));
for (int i = 0; i < int(res.size()); i++) {
res[i] = a[i] + b[i];
}
return Poly(res);
}
friend Poly operator-(const Poly &a, const Poly &b) {
std::vector<Z> res(std::max(a.size(), b.size()));
for (int i = 0; i < int(res.size()); i++) {
res[i] = a[i] - b[i];
}
return Poly(res);
}
friend Poly operator-(const Poly &a) {
std::vector<Z> res(a.size());
for (int i = 0; i < int(res.size()); i++) {
res[i] = -a[i];
}
return Poly(res);
}
friend Poly operator*(Poly a, Poly b) {
if (a.size() == 0 || b.size() == 0) {
return Poly();
}
if (a.size() < b.size()) {
std::swap(a, b);
}
if (b.size() < 128) {
Poly c(a.size() + b.size() - 1);
for (int i = 0; i < a.size(); i++) {
for (int j = 0; j < b.size(); j++) {
c[i + j] += a[i] * b[j];
}
}
return c;
}
int sz = 1, tot = a.size() + b.size() - 1;
while (sz < tot) {
sz *= 2;
}
a.a.resize(sz);
b.a.resize(sz);
dft(a.a);
dft(b.a);
for (int i = 0; i < sz; ++i) {
a.a[i] = a[i] * b[i];
}
idft(a.a);
a.resize(tot);
return a;
}
friend Poly operator*(Z a, Poly b) {
for (int i = 0; i < int(b.size()); i++) {
b[i] *= a;
}
return b;
}
friend Poly operator*(Poly a, Z b) {
for (int i = 0; i < int(a.size()); i++) {
a[i] *= b;
}
return a;
}
Poly &operator+=(Poly b) {
return (*this) = (*this) + b;
}
Poly &operator-=(Poly b) {
return (*this) = (*this) - b;
}
Poly &operator*=(Poly b) {
return (*this) = (*this) * b;
}
Poly &operator*=(Z b) {
return (*this) = (*this) * b;
}
Poly deriv() const {
if (a.empty()) {
return Poly();
}
std::vector<Z> res(size() - 1);
for (int i = 0; i < size() - 1; ++i) {
res[i] = (i + 1) * a[i + 1];
}
return Poly(res);
}
Poly integr() const {
std::vector<Z> res(size() + 1);
for (int i = 0; i < size(); ++i) {
res[i + 1] = a[i] / (i + 1);
}
return Poly(res);
}
Poly inv(int m) const {
Poly x{a[0].inv()};
int k = 1;
while (k < m) {
k *= 2;
x = (x * (Poly{2} - modxk(k) * x)).modxk(k);
}
return x.modxk(m);
}
Poly log(int m) const {
return (deriv() * inv(m)).integr().modxk(m);
}
Poly exp(int m) const {
Poly x{1};
int k = 1;
while (k < m) {
k *= 2;
x = (x * (Poly{1} - x.log(k) + modxk(k))).modxk(k);
}
return x.modxk(m);
}
Poly pow(int k, int m) const {
int i = 0;
while (i < size() && a[i].val() == 0) {
i++;
}
if (i == size() || 1LL * i * k >= m) {
return Poly(std::vector<Z>(m));
}
Z v = a[i];
auto f = divxk(i) * v.inv();
return (f.log(m - i * k) * k).exp(m - i * k).mulxk(i * k) * power(v, k);
}
Poly sqrt(int m) const {
Poly x{1};
int k = 1;
while (k < m) {
k *= 2;
x = (x + (modxk(k) * x.inv(k)).modxk(k)) * ((P + 1) / 2);
}
return x.modxk(m);
}
Poly mulT(Poly b) const {
if (b.size() == 0) {
return Poly();
}
int n = b.size();
std::reverse(b.a.begin(), b.a.end());
return ((*this) * b).divxk(n - 1);
}
std::vector<Z> eval(std::vector<Z> x) const {
if (size() == 0) {
return std::vector<Z>(x.size(), 0);
}
const int n = std::max(int(x.size()), size());
std::vector<Poly> q(4 * n);
std::vector<Z> ans(x.size());
x.resize(n);
std::function<void(int, int, int)> build = [&](int p, int l, int r) {
if (r - l == 1) {
q[p] = Poly{1, -x[l]};
} else {
int m = (l + r) / 2;
build(2 * p, l, m);
build(2 * p + 1, m, r);
q[p] = q[2 * p] * q[2 * p + 1];
}
};
build(1, 0, n);
std::function<void(int, int, int, const Poly &)> work = [&](int p, int l, int r, const Poly &num) {
if (r - l == 1) {
if (l < int(ans.size())) {
ans[l] = num[0];
}
} else {
int m = (l + r) / 2;
work(2 * p, l, m, num.mulT(q[2 * p + 1]).modxk(m - l));
work(2 * p + 1, m, r, num.mulT(q[2 * p]).modxk(r - m));
}
};
work(1, 0, n, mulT(q[1].inv(n)));
return ans;
}
};

11B - 多项式相关(Poly, with. MInt & MLong)

2023-09-20

长度过长,点击查看
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
std::vector<int> rev;
template<int P>
std::vector<MInt<P>> roots{0, 1};

template<int P>
constexpr MInt<P> findPrimitiveRoot() {
MInt<P> i = 2;
int k = __builtin_ctz(P - 1);
while (true) {
if (power(i, (P - 1) / 2) != 1) {
break;
}
i += 1;
}
return power(i, (P - 1) >> k);
}

template<int P>
constexpr MInt<P> primitiveRoot = findPrimitiveRoot<P>();

template<>
constexpr MInt<998244353> primitiveRoot<998244353> {31};

template<int P>
constexpr void dft(std::vector<MInt<P>> &a) {
int n = a.size();

if (int(rev.size()) != n) {
int k = __builtin_ctz(n) - 1;
rev.resize(n);
for (int i = 0; i < n; i++) {
rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
}
}

for (int i = 0; i < n; i++) {
if (rev[i] < i) {
std::swap(a[i], a[rev[i]]);
}
}
if (roots<P>.size() < n) {
int k = __builtin_ctz(roots<P>.size());
roots<P>.resize(n);
while ((1 << k) < n) {
auto e = power(primitiveRoot<P>, 1 << (__builtin_ctz(P - 1) - k - 1));
for (int i = 1 << (k - 1); i < (1 << k); i++) {
roots<P>[2 * i] = roots<P>[i];
roots<P>[2 * i + 1] = roots<P>[i] * e;
}
k++;
}
}
for (int k = 1; k < n; k *= 2) {
for (int i = 0; i < n; i += 2 * k) {
for (int j = 0; j < k; j++) {
MInt<P> u = a[i + j];
MInt<P> v = a[i + j + k] * roots<P>[k + j];
a[i + j] = u + v;
a[i + j + k] = u - v;
}
}
}
}

template<int P>
constexpr void idft(std::vector<MInt<P>> &a) {
int n = a.size();
std::reverse(a.begin() + 1, a.end());
dft(a);
MInt<P> inv = (1 - P) / n;
for (int i = 0; i < n; i++) {
a[i] *= inv;
}
}

template<int P = 998244353>
struct Poly : public std::vector<MInt<P>> {
using Value = MInt<P>;

Poly() : std::vector<Value>() {}
explicit constexpr Poly(int n) : std::vector<Value>(n) {}

explicit constexpr Poly(const std::vector<Value> &a) : std::vector<Value>(a) {}
constexpr Poly(const std::initializer_list<Value> &a) : std::vector<Value>(a) {}

template<class InputIt, class = std::_RequireInputIter<InputIt>>
explicit constexpr Poly(InputIt first, InputIt last) : std::vector<Value>(first, last) {}

template<class F>
explicit constexpr Poly(int n, F f) : std::vector<Value>(n) {
for (int i = 0; i < n; i++) {
(*this)[i] = f(i);
}
}

constexpr Poly shift(int k) const {
if (k >= 0) {
auto b = *this;
b.insert(b.begin(), k, 0);
return b;
} else if (this->size() <= -k) {
return Poly();
} else {
return Poly(this->begin() + (-k), this->end());
}
}
constexpr Poly trunc(int k) const {
Poly f = *this;
f.resize(k);
return f;
}
constexpr friend Poly operator+(const Poly &a, const Poly &b) {
Poly res(std::max(a.size(), b.size()));
for (int i = 0; i < a.size(); i++) {
res[i] += a[i];
}
for (int i = 0; i < b.size(); i++) {
res[i] += b[i];
}
return res;
}
constexpr friend Poly operator-(const Poly &a, const Poly &b) {
Poly res(std::max(a.size(), b.size()));
for (int i = 0; i < a.size(); i++) {
res[i] += a[i];
}
for (int i = 0; i < b.size(); i++) {
res[i] -= b[i];
}
return res;
}
constexpr friend Poly operator-(const Poly &a) {
std::vector<Value> res(a.size());
for (int i = 0; i < int(res.size()); i++) {
res[i] = -a[i];
}
return Poly(res);
}
constexpr friend Poly operator*(Poly a, Poly b) {
if (a.size() == 0 || b.size() == 0) {
return Poly();
}
if (a.size() < b.size()) {
std::swap(a, b);
}
int n = 1, tot = a.size() + b.size() - 1;
while (n < tot) {
n *= 2;
}
if (((P - 1) & (n - 1)) != 0 || b.size() < 128) {
Poly c(a.size() + b.size() - 1);
for (int i = 0; i < a.size(); i++) {
for (int j = 0; j < b.size(); j++) {
c[i + j] += a[i] * b[j];
}
}
return c;
}
a.resize(n);
b.resize(n);
dft(a);
dft(b);
for (int i = 0; i < n; ++i) {
a[i] *= b[i];
}
idft(a);
a.resize(tot);
return a;
}
constexpr friend Poly operator*(Value a, Poly b) {
for (int i = 0; i < int(b.size()); i++) {
b[i] *= a;
}
return b;
}
constexpr friend Poly operator*(Poly a, Value b) {
for (int i = 0; i < int(a.size()); i++) {
a[i] *= b;
}
return a;
}
constexpr friend Poly operator/(Poly a, Value b) {
for (int i = 0; i < int(a.size()); i++) {
a[i] /= b;
}
return a;
}
constexpr Poly &operator+=(Poly b) {
return (*this) = (*this) + b;
}
constexpr Poly &operator-=(Poly b) {
return (*this) = (*this) - b;
}
constexpr Poly &operator*=(Poly b) {
return (*this) = (*this) * b;
}
constexpr Poly &operator*=(Value b) {
return (*this) = (*this) * b;
}
constexpr Poly &operator/=(Value b) {
return (*this) = (*this) / b;
}
constexpr Poly deriv() const {
if (this->empty()) {
return Poly();
}
Poly res(this->size() - 1);
for (int i = 0; i < this->size() - 1; ++i) {
res[i] = (i + 1) * (*this)[i + 1];
}
return res;
}
constexpr Poly integr() const {
Poly res(this->size() + 1);
for (int i = 0; i < this->size(); ++i) {
res[i + 1] = (*this)[i] / (i + 1);
}
return res;
}
constexpr Poly inv(int m) const {
Poly x{(*this)[0].inv()};
int k = 1;
while (k < m) {
k *= 2;
x = (x * (Poly{2} - trunc(k) * x)).trunc(k);
}
return x.trunc(m);
}
constexpr Poly log(int m) const {
return (deriv() * inv(m)).integr().trunc(m);
}
constexpr Poly exp(int m) const {
Poly x{1};
int k = 1;
while (k < m) {
k *= 2;
x = (x * (Poly{1} - x.log(k) + trunc(k))).trunc(k);
}
return x.trunc(m);
}
constexpr Poly pow(int k, int m) const {
int i = 0;
while (i < this->size() && (*this)[i] == 0) {
i++;
}
if (i == this->size() || 1LL * i * k >= m) {
return Poly(m);
}
Value v = (*this)[i];
auto f = shift(-i) * v.inv();
return (f.log(m - i * k) * k).exp(m - i * k).shift(i * k) * power(v, k);
}
constexpr Poly sqrt(int m) const {
Poly x{1};
int k = 1;
while (k < m) {
k *= 2;
x = (x + (trunc(k) * x.inv(k)).trunc(k)) * CInv<2, P>;
}
return x.trunc(m);
}
constexpr Poly mulT(Poly b) const {
if (b.size() == 0) {
return Poly();
}
int n = b.size();
std::reverse(b.begin(), b.end());
return ((*this) * b).shift(-(n - 1));
}
constexpr std::vector<Value> eval(std::vector<Value> x) const {
if (this->size() == 0) {
return std::vector<Value>(x.size(), 0);
}
const int n = std::max(x.size(), this->size());
std::vector<Poly> q(4 * n);
std::vector<Value> ans(x.size());
x.resize(n);
std::function<void(int, int, int)> build = [&](int p, int l, int r) {
if (r - l == 1) {
q[p] = Poly{1, -x[l]};
} else {
int m = (l + r) / 2;
build(2 * p, l, m);
build(2 * p + 1, m, r);
q[p] = q[2 * p] * q[2 * p + 1];
}
};
build(1, 0, n);
std::function<void(int, int, int, const Poly &)> work = [&](int p, int l, int r, const Poly &num) {
if (r - l == 1) {
if (l < int(ans.size())) {
ans[l] = num[0];
}
} else {
int m = (l + r) / 2;
work(2 * p, l, m, num.mulT(q[2 * p + 1]).resize(m - l));
work(2 * p + 1, m, r, num.mulT(q[2 * p]).resize(r - m));
}
};
work(1, 0, n, mulT(q[1].inv(n)));
return ans;
}
};

template<int P = 998244353>
Poly<P> berlekampMassey(const Poly<P> &s) {
Poly<P> c;
Poly<P> oldC;
int f = -1;
for (int i = 0; i < s.size(); i++) {
auto delta = s[i];
for (int j = 1; j <= c.size(); j++) {
delta -= c[j - 1] * s[i - j];
}
if (delta == 0) {
continue;
}
if (f == -1) {
c.resize(i + 1);
f = i;
} else {
auto d = oldC;
d *= -1;
d.insert(d.begin(), 1);
MInt<P> df1 = 0;
for (int j = 1; j <= d.size(); j++) {
df1 += d[j - 1] * s[f + 1 - j];
}
assert(df1 != 0);
auto coef = delta / df1;
d *= coef;
Poly<P> zeros(i - f - 1);
zeros.insert(zeros.end(), d.begin(), d.end());
d = zeros;
auto temp = c;
c += d;
if (i - temp.size() > f - oldC.size()) {
oldC = temp;
f = i;
}
}
}
c *= -1;
c.insert(c.begin(), 1);
return c;
}


template<int P = 998244353>
MInt<P> linearRecurrence(Poly<P> p, Poly<P> q, i64 n) {
int m = q.size() - 1;
while (n > 0) {
auto newq = q;
for (int i = 1; i <= m; i += 2) {
newq[i] *= -1;
}
auto newp = p * newq;
newq = q * newq;
for (int i = 0; i < m; i++) {
p[i] = newp[i * 2 + n % 2];
}
for (int i = 0; i <= m; i++) {
q[i] = newq[i * 2];
}
n /= 2;
}
return p[0] / q[0];
}

struct Comb {
int n;
std::vector<Z> _fac;
std::vector<Z> _invfac;
std::vector<Z> _inv;

Comb() : n{0}, _fac{1}, _invfac{1}, _inv{0} {}
Comb(int n) : Comb() {
init(n);
}

void init(int m) {
m = std::min(m, Z::getMod() - 1);
if (m <= n) return;
_fac.resize(m + 1);
_invfac.resize(m + 1);
_inv.resize(m + 1);

for (int i = n + 1; i <= m; i++) {
_fac[i] = _fac[i - 1] * i;
}
_invfac[m] = _fac[m].inv();
for (int i = m; i > n; i--) {
_invfac[i - 1] = _invfac[i] * i;
_inv[i] = _invfac[i] * _fac[i - 1];
}
n = m;
}

Z fac(int m) {
if (m > n) init(2 * m);
return _fac[m];
}
Z invfac(int m) {
if (m > n) init(2 * m);
return _invfac[m];
}
Z inv(int m) {
if (m > n) init(2 * m);
return _inv[m];
}
Z binom(int n, int m) {
if (n < m || m < 0) return 0;
return fac(n) * invfac(m) * invfac(n - m);
}
} comb;

Poly<P> get(int n, int m) {
if (m == 0) {
return Poly(n + 1);
}
if (m % 2 == 1) {
auto f = get(n, m - 1);
Z p = 1;
for (int i = 0; i <= n; i++) {
f[n - i] += comb.binom(n, i) * p;
p *= m;
}
return f;
}
auto f = get(n, m / 2);
auto fm = f;
for (int i = 0; i <= n; i++) {
fm[i] *= comb.fac(i);
}
Poly pw(n + 1);
pw[0] = 1;
for (int i = 1; i <= n; i++) {
pw[i] = pw[i - 1] * (m / 2);
}
for (int i = 0; i <= n; i++) {
pw[i] *= comb.invfac(i);
}
fm = fm.mulT(pw);
for (int i = 0; i <= n; i++) {
fm[i] *= comb.invfac(i);
}
return f + fm;
}

四、数据结构

01A - 树状数组(Fenwick 旧版)

2023-08-11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
template <typename T>
struct Fenwick {
int n;
std::vector<T> a;

Fenwick(int n = 0) {
init(n);
}

void init(int n) {
this->n = n;
a.assign(n, T());
}

void add(int x, T v) {
for (int i = x + 1; i <= n; i += i & -i) {
a[i - 1] += v;
}
}

T sum(int x) {
auto ans = T();
for (int i = x; i > 0; i -= i & -i) {
ans += a[i - 1];
}
return ans;
}

T rangeSum(int l, int r) {
return sum(r) - sum(l);
}

int kth(T k) {
int x = 0;
for (int i = 1 << std::__lg(n); i; i /= 2) {
if (x + i <= n && k >= a[x + i - 1]) {
x += i;
k -= a[x - 1];
}
}
return x;
}
};

01B - 树状数组(Fenwick 新版)

2023-12-28

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
template <typename T>
struct Fenwick {
int n;
std::vector<T> a;

Fenwick(int n_ = 0) {
init(n_);
}

void init(int n_) {
n = n_;
a.assign(n, T{});
}

void add(int x, const T &v) {
for (int i = x + 1; i <= n; i += i & -i) {
a[i - 1] = a[i - 1] + v;
}
}

T sum(int x) {
T ans{};
for (int i = x; i > 0; i -= i & -i) {
ans = ans + a[i - 1];
}
return ans;
}

T rangeSum(int l, int r) {
return sum(r) - sum(l);
}

int select(const T &k) {
int x = 0;
T cur{};
for (int i = 1 << std::__lg(n); i; i /= 2) {
if (x + i <= n && cur + a[x + i - 1] <= k) {
x += i;
cur = cur + a[x - 1];
}
}
return x;
}
};

02 - 并查集(DSU)

2023-08-04

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
struct DSU {
std::vector<int> f, siz;

DSU() {}
DSU(int n) {
init(n);
}

void init(int n) {
f.resize(n);
std::iota(f.begin(), f.end(), 0);
siz.assign(n, 1);
}

int find(int x) {
while (x != f[x]) {
x = f[x] = f[f[x]];
}
return x;
}

bool same(int x, int y) {
return find(x) == find(y);
}

bool merge(int x, int y) {
x = find(x);
y = find(y);
if (x == y) {
return false;
}
siz[x] += siz[y];
f[y] = x;
return true;
}

int size(int x) {
return siz[find(x)];
}
};

03A - 线段树(SegmentTree 基础区间加乘)

2023-10-18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
struct SegmentTree {
int n;
std::vector<int> tag, sum;
SegmentTree(int n_) : n(n_), tag(4 * n, 1), sum(4 * n) {}

void pull(int p) {
sum[p] = (sum[2 * p] + sum[2 * p + 1]) % P;
}

void mul(int p, int v) {
tag[p] = 1LL * tag[p] * v % P;
sum[p] = 1LL * sum[p] * v % P;
}

void push(int p) {
mul(2 * p, tag[p]);
mul(2 * p + 1, tag[p]);
tag[p] = 1;
}

int query(int p, int l, int r, int x, int y) {
if (l >= y || r <= x) {
return 0;
}
if (l >= x && r <= y) {
return sum[p];
}
int m = (l + r) / 2;
push(p);
return (query(2 * p, l, m, x, y) + query(2 * p + 1, m, r, x, y)) % P;
}

int query(int x, int y) {
return query(1, 0, n, x, y);
}

void rangeMul(int p, int l, int r, int x, int y, int v) {
if (l >= y || r <= x) {
return;
}
if (l >= x && r <= y) {
return mul(p, v);
}
int m = (l + r) / 2;
push(p);
rangeMul(2 * p, l, m, x, y, v);
rangeMul(2 * p + 1, m, r, x, y, v);
pull(p);
}

void rangeMul(int x, int y, int v) {
rangeMul(1, 0, n, x, y, v);
}

void add(int p, int l, int r, int x, int v) {
if (r - l == 1) {
sum[p] = (sum[p] + v) % P;
return;
}
int m = (l + r) / 2;
push(p);
if (x < m) {
add(2 * p, l, m, x, v);
} else {
add(2 * p + 1, m, r, x, v);
}
pull(p);
}

void add(int x, int v) {
add(1, 0, n, x, v);
}
};

03B - 线段树(SegmentTree+Info 查找前驱后继)

2023-08-11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
template<class Info>
struct SegmentTree {
int n;
std::vector<Info> info;
SegmentTree() : n(0) {}
SegmentTree(int n_, Info v_ = Info()) {
init(n_, v_);
}
template<class T>
SegmentTree(std::vector<T> init_) {
init(init_);
}
void init(int n_, Info v_ = Info()) {
init(std::vector(n_, v_));
}
template<class T>
void init(std::vector<T> init_) {
n = init_.size();
info.assign(4 << std::__lg(n), Info());
std::function<void(int, int, int)> build = [&](int p, int l, int r) {
if (r - l == 1) {
info[p] = init_[l];
return;
}
int m = (l + r) / 2;
build(2 * p, l, m);
build(2 * p + 1, m, r);
pull(p);
};
build(1, 0, n);
}
void pull(int p) {
info[p] = info[2 * p] + info[2 * p + 1];
}
void modify(int p, int l, int r, int x, const Info &v) {
if (r - l == 1) {
info[p] = v;
return;
}
int m = (l + r) / 2;
if (x < m) {
modify(2 * p, l, m, x, v);
} else {
modify(2 * p + 1, m, r, x, v);
}
pull(p);
}
void modify(int p, const Info &v) {
modify(1, 0, n, p, v);
}
Info rangeQuery(int p, int l, int r, int x, int y) {
if (l >= y || r <= x) {
return Info();
}
if (l >= x && r <= y) {
return info[p];
}
int m = (l + r) / 2;
return rangeQuery(2 * p, l, m, x, y) + rangeQuery(2 * p + 1, m, r, x, y);
}
Info rangeQuery(int l, int r) {
return rangeQuery(1, 0, n, l, r);
}
template<class F>
int findFirst(int p, int l, int r, int x, int y, F pred) {
if (l >= y || r <= x || !pred(info[p])) {
return -1;
}
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
int res = findFirst(2 * p, l, m, x, y, pred);
if (res == -1) {
res = findFirst(2 * p + 1, m, r, x, y, pred);
}
return res;
}
template<class F>
int findFirst(int l, int r, F pred) {
return findFirst(1, 0, n, l, r, pred);
}
template<class F>
int findLast(int p, int l, int r, int x, int y, F pred) {
if (l >= y || r <= x || !pred(info[p])) {
return -1;
}
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
int res = findLast(2 * p + 1, m, r, x, y, pred);
if (res == -1) {
res = findLast(2 * p, l, m, x, y, pred);
}
return res;
}
template<class F>
int findLast(int l, int r, F pred) {
return findLast(1, 0, n, l, r, pred);
}
};
struct Info {
int cnt = 0;
i64 sum = 0;
i64 ans = 0;
};
Info operator+(Info a, Info b) {
Info c;
c.cnt = a.cnt + b.cnt;
c.sum = a.sum + b.sum;
c.ans = a.ans + b.ans + a.cnt * b.sum - a.sum * b.cnt;
return c;
}

03C - 线段树(SegmentTree+Info+Merge 区间合并)

2022-04-23

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
template<class Info>
struct SegmentTree {
int n;
std::vector<Info> info;
SegmentTree() : n(0) {}
SegmentTree(int n_, Info v_ = Info()) {
init(n_, v_);
}
template<class T>
SegmentTree(std::vector<T> init_) {
init(init_);
}
void init(int n_, Info v_ = Info()) {
init(std::vector(n_, v_));
}
template<class T>
void init(std::vector<T> init_) {
n = init_.size();
info.assign(4 << std::__lg(n), Info());
std::function<void(int, int, int)> build = [&](int p, int l, int r) {
if (r - l == 1) {
info[p] = init_[l];
return;
}
int m = (l + r) / 2;
build(2 * p, l, m);
build(2 * p + 1, m, r);
pull(p);
};
build(1, 0, n);
}
void pull(int p) {
info[p] = info[2 * p] + info[2 * p + 1];
}
void modify(int p, int l, int r, int x, const Info &v) {
if (r - l == 1) {
info[p] = v;
return;
}
int m = (l + r) / 2;
if (x < m) {
modify(2 * p, l, m, x, v);
} else {
modify(2 * p + 1, m, r, x, v);
}
pull(p);
}
void modify(int p, const Info &v) {
modify(1, 0, n, p, v);
}
Info rangeQuery(int p, int l, int r, int x, int y) {
if (l >= y || r <= x) {
return Info();
}
if (l >= x && r <= y) {
return info[p];
}
int m = (l + r) / 2;
return rangeQuery(2 * p, l, m, x, y) + rangeQuery(2 * p + 1, m, r, x, y);
}
Info rangeQuery(int l, int r) {
return rangeQuery(1, 0, n, l, r);
}
template<class F>
int findFirst(int p, int l, int r, int x, int y, F pred) {
if (l >= y || r <= x || !pred(info[p])) {
return -1;
}
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
int res = findFirst(2 * p, l, m, x, y, pred);
if (res == -1) {
res = findFirst(2 * p + 1, m, r, x, y, pred);
}
return res;
}
template<class F>
int findFirst(int l, int r, F pred) {
return findFirst(1, 0, n, l, r, pred);
}
template<class F>
int findLast(int p, int l, int r, int x, int y, F pred) {
if (l >= y || r <= x || !pred(info[p])) {
return -1;
}
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
int res = findLast(2 * p + 1, m, r, x, y, pred);
if (res == -1) {
res = findLast(2 * p, l, m, x, y, pred);
}
return res;
}
template<class F>
int findLast(int l, int r, F pred) {
return findLast(1, 0, n, l, r, pred);
}
};

struct Info {
int x = 0;
int cnt = 0;
};

Info operator+(Info a, Info b) {
if (a.x == b.x) {
return {a.x, a.cnt + b.cnt};
} else if (a.cnt > b.cnt) {
return {a.x, a.cnt - b.cnt};
} else {
return {b.x, b.cnt - a.cnt};
}
}

04A - 懒标记线段树(LazySegmentTree 基础区间修改)

2023-07-17

长度过长,点击查看
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
template<class Info, class Tag>
struct LazySegmentTree {
const int n;
std::vector<Info> info;
std::vector<Tag> tag;
LazySegmentTree(int n) : n(n), info(4 << std::__lg(n)), tag(4 << std::__lg(n)) {}
LazySegmentTree(std::vector<Info> init) : LazySegmentTree(init.size()) {
std::function<void(int, int, int)> build = [&](int p, int l, int r) {
if (r - l == 1) {
info[p] = init[l];
return;
}
int m = (l + r) / 2;
build(2 * p, l, m);
build(2 * p + 1, m, r);
pull(p);
};
build(1, 0, n);
}
void pull(int p) {
info[p] = info[2 * p] + info[2 * p + 1];
}
void apply(int p, const Tag &v) {
info[p].apply(v);
tag[p].apply(v);
}
void push(int p) {
apply(2 * p, tag[p]);
apply(2 * p + 1, tag[p]);
tag[p] = Tag();
}
void modify(int p, int l, int r, int x, const Info &v) {
if (r - l == 1) {
info[p] = v;
return;
}
int m = (l + r) / 2;
push(p);
if (x < m) {
modify(2 * p, l, m, x, v);
} else {
modify(2 * p + 1, m, r, x, v);
}
pull(p);
}
void modify(int p, const Info &v) {
modify(1, 0, n, p, v);
}
Info rangeQuery(int p, int l, int r, int x, int y) {
if (l >= y || r <= x) {
return Info();
}
if (l >= x && r <= y) {
return info[p];
}
int m = (l + r) / 2;
push(p);
return rangeQuery(2 * p, l, m, x, y) + rangeQuery(2 * p + 1, m, r, x, y);
}
Info rangeQuery(int l, int r) {
return rangeQuery(1, 0, n, l, r);
}
void rangeApply(int p, int l, int r, int x, int y, const Tag &v) {
if (l >= y || r <= x) {
return;
}
if (l >= x && r <= y) {
apply(p, v);
return;
}
int m = (l + r) / 2;
push(p);
rangeApply(2 * p, l, m, x, y, v);
rangeApply(2 * p + 1, m, r, x, y, v);
pull(p);
}
void rangeApply(int l, int r, const Tag &v) {
return rangeApply(1, 0, n, l, r, v);
}
void half(int p, int l, int r) {
if (info[p].act == 0) {
return;
}
if ((info[p].min + 1) / 2 == (info[p].max + 1) / 2) {
apply(p, {-(info[p].min + 1) / 2});
return;
}
int m = (l + r) / 2;
push(p);
half(2 * p, l, m);
half(2 * p + 1, m, r);
pull(p);
}
void half() {
half(1, 0, n);
}
};

constexpr i64 inf = 1E18;

struct Tag {
i64 add = 0;

void apply(Tag t) {
add += t.add;
}
};

struct Info {
i64 min = inf;
i64 max = -inf;
i64 sum = 0;
i64 act = 0;

void apply(Tag t) {
min += t.add;
max += t.add;
sum += act * t.add;
}
};

Info operator+(Info a, Info b) {
Info c;
c.min = std::min(a.min, b.min);
c.max = std::max(a.max, b.max);
c.sum = a.sum + b.sum;
c.act = a.act + b.act;
return c;
}

04B - 懒标记线段树(LazySegmentTree 查找前驱后继)

2023-07-17

长度过长,点击查看
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
template<class Info, class Tag>
struct LazySegmentTree {
int n;
std::vector<Info> info;
std::vector<Tag> tag;
LazySegmentTree() : n(0) {}
LazySegmentTree(int n_, Info v_ = Info()) {
init(n_, v_);
}
template<class T>
LazySegmentTree(std::vector<T> init_) {
init(init_);
}
void init(int n_, Info v_ = Info()) {
init(std::vector(n_, v_));
}
template<class T>
void init(std::vector<T> init_) {
n = init_.size();
info.assign(4 << std::__lg(n), Info());
tag.assign(4 << std::__lg(n), Tag());
std::function<void(int, int, int)> build = [&](int p, int l, int r) {
if (r - l == 1) {
info[p] = init_[l];
return;
}
int m = (l + r) / 2;
build(2 * p, l, m);
build(2 * p + 1, m, r);
pull(p);
};
build(1, 0, n);
}
void pull(int p) {
info[p] = info[2 * p] + info[2 * p + 1];
}
void apply(int p, const Tag &v) {
info[p].apply(v);
tag[p].apply(v);
}
void push(int p) {
apply(2 * p, tag[p]);
apply(2 * p + 1, tag[p]);
tag[p] = Tag();
}
void modify(int p, int l, int r, int x, const Info &v) {
if (r - l == 1) {
info[p] = v;
return;
}
int m = (l + r) / 2;
push(p);
if (x < m) {
modify(2 * p, l, m, x, v);
} else {
modify(2 * p + 1, m, r, x, v);
}
pull(p);
}
void modify(int p, const Info &v) {
modify(1, 0, n, p, v);
}
Info rangeQuery(int p, int l, int r, int x, int y) {
if (l >= y || r <= x) {
return Info();
}
if (l >= x && r <= y) {
return info[p];
}
int m = (l + r) / 2;
push(p);
return rangeQuery(2 * p, l, m, x, y) + rangeQuery(2 * p + 1, m, r, x, y);
}
Info rangeQuery(int l, int r) {
return rangeQuery(1, 0, n, l, r);
}
void rangeApply(int p, int l, int r, int x, int y, const Tag &v) {
if (l >= y || r <= x) {
return;
}
if (l >= x && r <= y) {
apply(p, v);
return;
}
int m = (l + r) / 2;
push(p);
rangeApply(2 * p, l, m, x, y, v);
rangeApply(2 * p + 1, m, r, x, y, v);
pull(p);
}
void rangeApply(int l, int r, const Tag &v) {
return rangeApply(1, 0, n, l, r, v);
}
template<class F>
int findFirst(int p, int l, int r, int x, int y, F pred) {
if (l >= y || r <= x || !pred(info[p])) {
return -1;
}
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
push(p);
int res = findFirst(2 * p, l, m, x, y, pred);
if (res == -1) {
res = findFirst(2 * p + 1, m, r, x, y, pred);
}
return res;
}
template<class F>
int findFirst(int l, int r, F pred) {
return findFirst(1, 0, n, l, r, pred);
}
template<class F>
int findLast(int p, int l, int r, int x, int y, F pred) {
if (l >= y || r <= x || !pred(info[p])) {
return -1;
}
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
push(p);
int res = findLast(2 * p + 1, m, r, x, y, pred);
if (res == -1) {
res = findLast(2 * p, l, m, x, y, pred);
}
return res;
}
template<class F>
int findLast(int l, int r, F pred) {
return findLast(1, 0, n, l, r, pred);
}
};

struct Tag {
i64 a = 0, b = 0;
void apply(Tag t) {
a = std::min(a, b + t.a);
b += t.b;
}
};

int k;

struct Info {
i64 x = 0;
void apply(Tag t) {
x += t.a;
if (x < 0) {
x = (x % k + k) % k;
}
x += t.b - t.a;
}
};
Info operator+(Info a, Info b) {
return {a.x + b.x};
}

04C - 懒标记线段树(LazySegmentTree 二分修改)

2023-03-03

长度过长,点击查看
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
constexpr int inf = 1E9 + 1;
template<class Info, class Tag>
struct LazySegmentTree {
const int n;
std::vector<Info> info;
std::vector<Tag> tag;
LazySegmentTree(int n) : n(n), info(4 << std::__lg(n)), tag(4 << std::__lg(n)) {}
LazySegmentTree(std::vector<Info> init) : LazySegmentTree(init.size()) {
std::function<void(int, int, int)> build = [&](int p, int l, int r) {
if (r - l == 1) {
info[p] = init[l];
return;
}
int m = (l + r) / 2;
build(2 * p, l, m);
build(2 * p + 1, m, r);
pull(p);
};
build(1, 0, n);
}
void pull(int p) {
info[p] = info[2 * p] + info[2 * p + 1];
}
void apply(int p, const Tag &v) {
info[p].apply(v);
tag[p].apply(v);
}
void push(int p) {
apply(2 * p, tag[p]);
apply(2 * p + 1, tag[p]);
tag[p] = Tag();
}
void modify(int p, int l, int r, int x, const Info &v) {
if (r - l == 1) {
info[p] = v;
return;
}
int m = (l + r) / 2;
push(p);
if (x < m) {
modify(2 * p, l, m, x, v);
} else {
modify(2 * p + 1, m, r, x, v);
}
pull(p);
}
void modify(int p, const Info &v) {
modify(1, 0, n, p, v);
}
Info rangeQuery(int p, int l, int r, int x, int y) {
if (l >= y || r <= x) {
return Info();
}
if (l >= x && r <= y) {
return info[p];
}
int m = (l + r) / 2;
push(p);
return rangeQuery(2 * p, l, m, x, y) + rangeQuery(2 * p + 1, m, r, x, y);
}
Info rangeQuery(int l, int r) {
return rangeQuery(1, 0, n, l, r);
}
void rangeApply(int p, int l, int r, int x, int y, const Tag &v) {
if (l >= y || r <= x) {
return;
}
if (l >= x && r <= y) {
apply(p, v);
return;
}
int m = (l + r) / 2;
push(p);
rangeApply(2 * p, l, m, x, y, v);
rangeApply(2 * p + 1, m, r, x, y, v);
pull(p);
}
void rangeApply(int l, int r, const Tag &v) {
return rangeApply(1, 0, n, l, r, v);
}
void maintainL(int p, int l, int r, int pre) {
if (info[p].difl > 0 && info[p].maxlowl < pre) {
return;
}
if (r - l == 1) {
info[p].max = info[p].maxlowl;
info[p].maxl = info[p].maxr = l;
info[p].maxlowl = info[p].maxlowr = -inf;
return;
}
int m = (l + r) / 2;
push(p);
maintainL(2 * p, l, m, pre);
pre = std::max(pre, info[2 * p].max);
maintainL(2 * p + 1, m, r, pre);
pull(p);
}
void maintainL() {
maintainL(1, 0, n, -1);
}
void maintainR(int p, int l, int r, int suf) {
if (info[p].difr > 0 && info[p].maxlowr < suf) {
return;
}
if (r - l == 1) {
info[p].max = info[p].maxlowl;
info[p].maxl = info[p].maxr = l;
info[p].maxlowl = info[p].maxlowr = -inf;
return;
}
int m = (l + r) / 2;
push(p);
maintainR(2 * p + 1, m, r, suf);
suf = std::max(suf, info[2 * p + 1].max);
maintainR(2 * p, l, m, suf);
pull(p);
}
void maintainR() {
maintainR(1, 0, n, -1);
}
};

struct Tag {
int add = 0;

void apply(Tag t) & {
add += t.add;
}
};

struct Info {
int max = -1;
int maxl = -1;
int maxr = -1;
int difl = inf;
int difr = inf;
int maxlowl = -inf;
int maxlowr = -inf;

void apply(Tag t) & {
if (max != -1) {
max += t.add;
}
difl += t.add;
difr += t.add;
}
};

Info operator+(Info a, Info b) {
Info c;
if (a.max > b.max) {
c.max = a.max;
c.maxl = a.maxl;
c.maxr = a.maxr;
} else if (a.max < b.max) {
c.max = b.max;
c.maxl = b.maxl;
c.maxr = b.maxr;
} else {
c.max = a.max;
c.maxl = a.maxl;
c.maxr = b.maxr;
}

c.difl = std::min(a.difl, b.difl);
c.difr = std::min(a.difr, b.difr);
if (a.max != -1) {
c.difl = std::min(c.difl, a.max - b.maxlowl);
}
if (b.max != -1) {
c.difr = std::min(c.difr, b.max - a.maxlowr);
}

if (a.max == -1) {
c.maxlowl = std::max(a.maxlowl, b.maxlowl);
} else {
c.maxlowl = a.maxlowl;
}
if (b.max == -1) {
c.maxlowr = std::max(a.maxlowr, b.maxlowr);
} else {
c.maxlowr = b.maxlowr;
}
return c;
}

05A - 取模类(MLong & MInt)

2022-06-12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
constexpr int P = 998244353;
using i64 = long long;
// assume -P <= x < 2P
int norm(int x) {
if (x < 0) {
x += P;
}
if (x >= P) {
x -= P;
}
return x;
}
template<class T>
T power(T a, i64 b) {
T res = 1;
for (; b; b /= 2, a *= a) {
if (b % 2) {
res *= a;
}
}
return res;
}
struct Z {
int x;
Z(int x = 0) : x(norm(x)) {}
Z(i64 x) : x(norm(x % P)) {}
int val() const {
return x;
}
Z operator-() const {
return Z(norm(P - x));
}
Z inv() const {
assert(x != 0);
return power(*this, P - 2);
}
Z &operator*=(const Z &rhs) {
x = i64(x) * rhs.x % P;
return *this;
}
Z &operator+=(const Z &rhs) {
x = norm(x + rhs.x);
return *this;
}
Z &operator-=(const Z &rhs) {
x = norm(x - rhs.x);
return *this;
}
Z &operator/=(const Z &rhs) {
return *this *= rhs.inv();
}
friend Z operator*(const Z &lhs, const Z &rhs) {
Z res = lhs;
res *= rhs;
return res;
}
friend Z operator+(const Z &lhs, const Z &rhs) {
Z res = lhs;
res += rhs;
return res;
}
friend Z operator-(const Z &lhs, const Z &rhs) {
Z res = lhs;
res -= rhs;
return res;
}
friend Z operator/(const Z &lhs, const Z &rhs) {
Z res = lhs;
res /= rhs;
return res;
}
friend std::istream &operator>>(std::istream &is, Z &a) {
i64 v;
is >> v;
a = Z(v);
return is;
}
friend std::ostream &operator<<(std::ostream &os, const Z &a) {
return os << a.val();
}
};

05B - 取模类(MLong & MInt 新版)

2023-08-14

根据输入内容动态修改 MOD 的方法:Z::setMod(p); 。

长度过长,点击查看
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
template<class T>
constexpr T power(T a, i64 b) {
T res = 1;
for (; b; b /= 2, a *= a) {
if (b % 2) {
res *= a;
}
}
return res;
}

constexpr i64 mul(i64 a, i64 b, i64 p) {
i64 res = a * b - i64(1.L * a * b / p) * p;
res %= p;
if (res < 0) {
res += p;
}
return res;
}
template<i64 P>
struct MLong {
i64 x;
constexpr MLong() : x{} {}
constexpr MLong(i64 x) : x{norm(x % getMod())} {}

static i64 Mod;
constexpr static i64 getMod() {
if (P > 0) {
return P;
} else {
return Mod;
}
}
constexpr static void setMod(i64 Mod_) {
Mod = Mod_;
}
constexpr i64 norm(i64 x) const {
if (x < 0) {
x += getMod();
}
if (x >= getMod()) {
x -= getMod();
}
return x;
}
constexpr i64 val() const {
return x;
}
explicit constexpr operator i64() const {
return x;
}
constexpr MLong operator-() const {
MLong res;
res.x = norm(getMod() - x);
return res;
}
constexpr MLong inv() const {
assert(x != 0);
return power(*this, getMod() - 2);
}
constexpr MLong &operator*=(MLong rhs) & {
x = mul(x, rhs.x, getMod());
return *this;
}
constexpr MLong &operator+=(MLong rhs) & {
x = norm(x + rhs.x);
return *this;
}
constexpr MLong &operator-=(MLong rhs) & {
x = norm(x - rhs.x);
return *this;
}
constexpr MLong &operator/=(MLong rhs) & {
return *this *= rhs.inv();
}
friend constexpr MLong operator*(MLong lhs, MLong rhs) {
MLong res = lhs;
res *= rhs;
return res;
}
friend constexpr MLong operator+(MLong lhs, MLong rhs) {
MLong res = lhs;
res += rhs;
return res;
}
friend constexpr MLong operator-(MLong lhs, MLong rhs) {
MLong res = lhs;
res -= rhs;
return res;
}
friend constexpr MLong operator/(MLong lhs, MLong rhs) {
MLong res = lhs;
res /= rhs;
return res;
}
friend constexpr std::istream &operator>>(std::istream &is, MLong &a) {
i64 v;
is >> v;
a = MLong(v);
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const MLong &a) {
return os << a.val();
}
friend constexpr bool operator==(MLong lhs, MLong rhs) {
return lhs.val() == rhs.val();
}
friend constexpr bool operator!=(MLong lhs, MLong rhs) {
return lhs.val() != rhs.val();
}
};

template<>
i64 MLong<0LL>::Mod = i64(1E18) + 9;

template<int P>
struct MInt {
int x;
constexpr MInt() : x{} {}
constexpr MInt(i64 x) : x{norm(x % getMod())} {}

static int Mod;
constexpr static int getMod() {
if (P > 0) {
return P;
} else {
return Mod;
}
}
constexpr static void setMod(int Mod_) {
Mod = Mod_;
}
constexpr int norm(int x) const {
if (x < 0) {
x += getMod();
}
if (x >= getMod()) {
x -= getMod();
}
return x;
}
constexpr int val() const {
return x;
}
explicit constexpr operator int() const {
return x;
}
constexpr MInt operator-() const {
MInt res;
res.x = norm(getMod() - x);
return res;
}
constexpr MInt inv() const {
assert(x != 0);
return power(*this, getMod() - 2);
}
constexpr MInt &operator*=(MInt rhs) & {
x = 1LL * x * rhs.x % getMod();
return *this;
}
constexpr MInt &operator+=(MInt rhs) & {
x = norm(x + rhs.x);
return *this;
}
constexpr MInt &operator-=(MInt rhs) & {
x = norm(x - rhs.x);
return *this;
}
constexpr MInt &operator/=(MInt rhs) & {
return *this *= rhs.inv();
}
friend constexpr MInt operator*(MInt lhs, MInt rhs) {
MInt res = lhs;
res *= rhs;
return res;
}
friend constexpr MInt operator+(MInt lhs, MInt rhs) {
MInt res = lhs;
res += rhs;
return res;
}
friend constexpr MInt operator-(MInt lhs, MInt rhs) {
MInt res = lhs;
res -= rhs;
return res;
}
friend constexpr MInt operator/(MInt lhs, MInt rhs) {
MInt res = lhs;
res /= rhs;
return res;
}
friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
i64 v;
is >> v;
a = MInt(v);
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
return os << a.val();
}
friend constexpr bool operator==(MInt lhs, MInt rhs) {
return lhs.val() == rhs.val();
}
friend constexpr bool operator!=(MInt lhs, MInt rhs) {
return lhs.val() != rhs.val();
}
};

template<>
int MInt<0>::Mod = 998244353;

template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();

constexpr int P = 1000000007;
using Z = MInt<P>;

06 - 状压RMQ(RMQ)

2023-03-02

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
template<class T,
class Cmp = std::less<T>>
struct RMQ {
const Cmp cmp = Cmp();
static constexpr unsigned B = 64;
using u64 = unsigned long long;
int n;
std::vector<std::vector<T>> a;
std::vector<T> pre, suf, ini;
std::vector<u64> stk;
RMQ() {}
RMQ(const std::vector<T> &v) {
init(v);
}
void init(const std::vector<T> &v) {
n = v.size();
pre = suf = ini = v;
stk.resize(n);
if (!n) {
return;
}
const int M = (n - 1) / B + 1;
const int lg = std::__lg(M);
a.assign(lg + 1, std::vector<T>(M));
for (int i = 0; i < M; i++) {
a[0][i] = v[i * B];
for (int j = 1; j < B && i * B + j < n; j++) {
a[0][i] = std::min(a[0][i], v[i * B + j], cmp);
}
}
for (int i = 1; i < n; i++) {
if (i % B) {
pre[i] = std::min(pre[i], pre[i - 1], cmp);
}
}
for (int i = n - 2; i >= 0; i--) {
if (i % B != B - 1) {
suf[i] = std::min(suf[i], suf[i + 1], cmp);
}
}
for (int j = 0; j < lg; j++) {
for (int i = 0; i + (2 << j) <= M; i++) {
a[j + 1][i] = std::min(a[j][i], a[j][i + (1 << j)], cmp);
}
}
for (int i = 0; i < M; i++) {
const int l = i * B;
const int r = std::min(1U * n, l + B);
u64 s = 0;
for (int j = l; j < r; j++) {
while (s && cmp(v[j], v[std::__lg(s) + l])) {
s ^= 1ULL << std::__lg(s);
}
s |= 1ULL << (j - l);
stk[j] = s;
}
}
}
T operator()(int l, int r) {
if (l / B != (r - 1) / B) {
T ans = std::min(suf[l], pre[r - 1], cmp);
l = l / B + 1;
r = r / B;
if (l < r) {
int k = std::__lg(r - l);
ans = std::min({ans, a[k][l], a[k][r - (1 << k)]}, cmp);
}
return ans;
} else {
int x = B * (l / B);
return ini[__builtin_ctzll(stk[r - 1] >> (l - x)) + l];
}
}
};

07 - Splay

2023-02-15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
struct Node {
Node *l = nullptr;
Node *r = nullptr;
int cnt = 0;
i64 sum = 0;
};

Node *add(Node *t, int l, int r, int p, int v) {
Node *x = new Node;
if (t) {
*x = *t;
}
x->cnt += 1;
x->sum += v;
if (r - l == 1) {
return x;
}
int m = (l + r) / 2;
if (p < m) {
x->l = add(x->l, l, m, p, v);
} else {
x->r = add(x->r, m, r, p, v);
}
return x;
}

int find(Node *tl, Node *tr, int l, int r, int x) {
if (r <= x) {
return -1;
}
if (l >= x) {
int cnt = (tr ? tr->cnt : 0) - (tl ? tl->cnt : 0);
if (cnt == 0) {
return -1;
}
if (r - l == 1) {
return l;
}
}
int m = (l + r) / 2;
int res = find(tl ? tl->l : tl, tr ? tr->l : tr, l, m, x);
if (res == -1) {
res = find(tl ? tl->r : tl, tr ? tr->r : tr, m, r, x);
}
return res;
}

std::pair<int, i64> get(Node *t, int l, int r, int x, int y) {
if (l >= y || r <= x || !t) {
return {0, 0LL};
}
if (l >= x && r <= y) {
return {t->cnt, t->sum};
}
int m = (l + r) / 2;
auto [cl, sl] = get(t->l, l, m, x, y);
auto [cr, sr] = get(t->r, m, r, x, y);
return {cl + cr, sl + sr};
}

struct Tree {
int add = 0;
int val = 0;
int id = 0;
Tree *ch[2] = {};
Tree *p = nullptr;
};

int pos(Tree *t) {
return t->p->ch[1] == t;
}

void add(Tree *t, int v) {
t->val += v;
t->add += v;
}

void push(Tree *t) {
if (t->ch[0]) {
add(t->ch[0], t->add);
}
if (t->ch[1]) {
add(t->ch[1], t->add);
}
t->add = 0;
}

void rotate(Tree *t) {
Tree *q = t->p;
int x = !pos(t);
q->ch[!x] = t->ch[x];
if (t->ch[x]) t->ch[x]->p = q;
t->p = q->p;
if (q->p) q->p->ch[pos(q)] = t;
t->ch[x] = q;
q->p = t;
}

void splay(Tree *t) {
std::vector<Tree *> s;
for (Tree *i = t; i->p; i = i->p) s.push_back(i->p);
while (!s.empty()) {
push(s.back());
s.pop_back();
}
push(t);
while (t->p) {
if (t->p->p) {
if (pos(t) == pos(t->p)) rotate(t->p);
else rotate(t);
}
rotate(t);
}
}

void insert(Tree *&t, Tree *x, Tree *p = nullptr) {
if (!t) {
t = x;
x->p = p;
return;
}

push(t);
if (x->val < t->val) {
insert(t->ch[0], x, t);
} else {
insert(t->ch[1], x, t);
}
}

void dfs(Tree *t) {
if (!t) {
return;
}
push(t);
dfs(t->ch[0]);
std::cerr << t->val << " ";
dfs(t->ch[1]);
}

std::pair<Tree *, Tree *> split(Tree *t, int x) {
if (!t) {
return {t, t};
}
Tree *v = nullptr;
Tree *j = t;
for (Tree *i = t; i; ) {
push(i);
j = i;
if (i->val >= x) {
v = i;
i = i->ch[0];
} else {
i = i->ch[1];
}
}

splay(j);
if (!v) {
return {j, nullptr};
}

splay(v);

Tree *u = v->ch[0];
if (u) {
v->ch[0] = u->p = nullptr;
}
// std::cerr << "split " << x << "\n";
// dfs(u);
// std::cerr << "\n";
// dfs(v);
// std::cerr << "\n";
return {u, v};
}

Tree *merge(Tree *l, Tree *r) {
if (!l) {
return r;
}
if (!r) {
return l;
}
Tree *i = l;
while (i->ch[1]) {
i = i->ch[1];
}
splay(i);
i->ch[1] = r;
r->p = i;
return i;
}

2023-09-30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
struct Node {
Node *ch[2], *p;
bool rev;
int siz = 1;
Node() : ch{nullptr, nullptr}, p(nullptr), rev(false) {}
};
void reverse(Node *t) {
if (t) {
std::swap(t->ch[0], t->ch[1]);
t->rev ^= 1;
}
}
void push(Node *t) {
if (t->rev) {
reverse(t->ch[0]);
reverse(t->ch[1]);
t->rev = false;
}
}
void pull(Node *t) {
t->siz = (t->ch[0] ? t->ch[0]->siz : 0) + 1 + (t->ch[1] ? t->ch[1]->siz : 0);
}
bool isroot(Node *t) {
return t->p == nullptr || (t->p->ch[0] != t && t->p->ch[1] != t);
}
int pos(Node *t) {
return t->p->ch[1] == t;
}
void pushAll(Node *t) {
if (!isroot(t)) {
pushAll(t->p);
}
push(t);
}
void rotate(Node *t) {
Node *q = t->p;
int x = !pos(t);
q->ch[!x] = t->ch[x];
if (t->ch[x]) {
t->ch[x]->p = q;
}
t->p = q->p;
if (!isroot(q)) {
q->p->ch[pos(q)] = t;
}
t->ch[x] = q;
q->p = t;
pull(q);
}
void splay(Node *t) {
pushAll(t);
while (!isroot(t)) {
if (!isroot(t->p)) {
if (pos(t) == pos(t->p)) {
rotate(t->p);
} else {
rotate(t);
}
}
rotate(t);
}
pull(t);
}
void access(Node *t) {
for (Node *i = t, *q = nullptr; i; q = i, i = i->p) {
splay(i);
i->ch[1] = q;
pull(i);
}
splay(t);
}
void makeroot(Node *t) {
access(t);
reverse(t);
}
void link(Node *x, Node *y) {
makeroot(x);
x->p = y;
}
void split(Node *x, Node *y) {
makeroot(x);
access(y);
}
void cut(Node *x, Node *y) {
split(x, y);
x->p = y->ch[0] = nullptr;
pull(y);
}
int dist(Node *x, Node *y) {
split(x, y);
return y->siz - 1;
}

2024-03-30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
struct Matrix : std::array<std::array<i64, 4>, 4> {
Matrix(i64 v = 0) {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
(*this)[i][j] = (i == j ? v : inf);
}
}
}
};

Matrix operator*(const Matrix &a, const Matrix &b) {
Matrix c(inf);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
for (int k = 0; k < 4; k++) {
c[i][k] = std::min(c[i][k], a[i][j] + b[j][k]);
}
}
c[i][3] = std::min(c[i][3], a[i][3]);
}
c[3][3] = 0;
return c;
}

struct Node {
Node *ch[2], *p;
i64 sumg = 0;
i64 sumh = 0;
i64 sumb = 0;
i64 g = 0;
i64 h = 0;
i64 b = 0;
Matrix mat;
Matrix prd;
std::array<i64, 4> ans{};
Node() : ch{nullptr, nullptr}, p(nullptr) {}

void update() {
mat = Matrix(inf);
mat[0][0] = b + h - g + sumg;
mat[1][1] = mat[1][2] = mat[1][3] = h + sumh;
mat[2][0] = mat[2][1] = mat[2][2] = mat[2][3] = b + h + sumb;
mat[3][3] = 0;
}
};
void push(Node *t) {

}
void pull(Node *t) {
t->prd = (t->ch[0] ? t->ch[0]->prd : Matrix()) * t->mat * (t->ch[1] ? t->ch[1]->prd : Matrix());
}
bool isroot(Node *t) {
return t->p == nullptr || (t->p->ch[0] != t && t->p->ch[1] != t);
}
int pos(Node *t) {
return t->p->ch[1] == t;
}
void pushAll(Node *t) {
if (!isroot(t)) {
pushAll(t->p);
}
push(t);
}
void rotate(Node *t) {
Node *q = t->p;
int x = !pos(t);
q->ch[!x] = t->ch[x];
if (t->ch[x]) {
t->ch[x]->p = q;
}
t->p = q->p;
if (!isroot(q)) {
q->p->ch[pos(q)] = t;
}
t->ch[x] = q;
q->p = t;
pull(q);
}
void splay(Node *t) {
pushAll(t);
while (!isroot(t)) {
if (!isroot(t->p)) {
if (pos(t) == pos(t->p)) {
rotate(t->p);
} else {
rotate(t);
}
}
rotate(t);
}
pull(t);
}

std::array<i64, 4> get(Node *t) {
std::array<i64, 4> ans;
ans.fill(inf);
ans[3] = 0;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 4; j++) {
ans[i] = std::min(ans[i], t->prd[i][j]);
}
}
return ans;
}

void access(Node *t) {
std::array<i64, 4> old{};
for (Node *i = t, *q = nullptr; i; q = i, i = i->p) {
splay(i);
if (i->ch[1]) {
auto res = get(i->ch[1]);
i->sumg += res[0];
i->sumh += std::min({res[1], res[2], res[3]});
i->sumb += std::min({res[0], res[1], res[2], res[3]});
}
i->ch[1] = q;
i->sumg -= old[0];
i->sumh -= std::min({old[1], old[2], old[3]});
i->sumb -= std::min({old[0], old[1], old[2], old[3]});
old = get(i);
i->update();
pull(i);
}
splay(t);
}

08 - 其他平衡树

2023-08-04

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
struct Node {
Node *l = nullptr;
Node *r = nullptr;
int sum = 0;
int sumodd = 0;

Node(Node *t) {
if (t) {
*this = *t;
}
}
};

Node *add(Node *t, int l, int r, int x, int v) {
t = new Node(t);
t->sum += v;
t->sumodd += (x % 2) * v;
if (r - l == 1) {
return t;
}
int m = (l + r) / 2;
if (x < m) {
t->l = add(t->l, l, m, x, v);
} else {
t->r = add(t->r, m, r, x, v);
}
return t;
}

int query1(Node *t1, Node *t2, int l, int r, int k) {
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
int odd = (t1 && t1->r ? t1->r->sumodd : 0) - (t2 && t2->r ? t2->r->sumodd : 0);
int cnt = (t1 && t1->r ? t1->r->sum : 0) - (t2 && t2->r ? t2->r->sum : 0);
if (odd > 0 || cnt > k) {
return query1(t1 ? t1->r : t1, t2 ? t2->r : t2, m, r, k);
} else {
return query1(t1 ? t1->l : t1, t2 ? t2->l : t2, l, m, k - cnt);
}
}

std::array<int, 3> query2(Node *t1, Node *t2, int l, int r, int k) {
if (r - l == 1) {
int cnt = (t1 ? t1->sumodd : 0) - (t2 ? t2->sumodd : 0);
return {l, cnt, k};
}
int m = (l + r) / 2;
int cnt = (t1 && t1->r ? t1->r->sumodd : 0) - (t2 && t2->r ? t2->r->sumodd : 0);
if (cnt > k) {
return query2(t1 ? t1->r : t1, t2 ? t2->r : t2, m, r, k);
} else {
return query2(t1 ? t1->l : t1, t2 ? t2->l : t2, l, m, k - cnt);
}
}

2023-08-26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
struct Node {
Node *l = nullptr;
Node *r = nullptr;
int cnt = 0;
};

Node *add(Node *t, int l, int r, int x) {
if (t) {
t = new Node(*t);
} else {
t = new Node;
}
t->cnt += 1;
if (r - l == 1) {
return t;
}
int m = (l + r) / 2;
if (x < m) {
t->l = add(t->l, l, m, x);
} else {
t->r = add(t->r, m, r, x);
}
return t;
}

int query(Node *t1, Node *t2, int l, int r, int x) {
int cnt = (t2 ? t2->cnt : 0) - (t1 ? t1->cnt : 0);
if (cnt == 0 || l >= x) {
return -1;
}
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
int res = query(t1 ? t1->r : t1, t2 ? t2->r : t2, m, r, x);
if (res == -1) {
res = query(t1 ? t1->l : t1, t2 ? t2->l : t2, l, m, x);
}
return res;
}

2023-04-03
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
struct Info {
int imp = 0;
int id = 0;
};

Info operator+(Info a, Info b) {
return {std::max(a.imp, b.imp), 0};
}

struct Node {
int w = rng();
Info info;
Info sum;
int siz = 1;
Node *l = nullptr;
Node *r = nullptr;
};

void pull(Node *t) {
t->sum = t->info;
t->siz = 1;
if (t->l) {
t->sum = t->l->sum + t->sum;
t->siz += t->l->siz;
}
if (t->r) {
t->sum = t->sum + t->r->sum;
t->siz += t->r->siz;
}
}

std::pair<Node *, Node *> splitAt(Node *t, int p) {
if (!t) {
return {t, t};
}
if (p <= (t->l ? t->l->siz : 0)) {
auto [l, r] = splitAt(t->l, p);
t->l = r;
pull(t);
return {l, t};
} else {
auto [l, r] = splitAt(t->r, p - 1 - (t->l ? t->l->siz : 0));
t->r = l;
pull(t);
return {t, r};
}
}

void insertAt(Node *&t, int p, Node *x) {
if (!t) {
t = x;
return;
}
if (x->w < t->w) {
auto [l, r] = splitAt(t, p);
t = x;
t->l = l;
t->r = r;
pull(t);
return;
}
if (p <= (t->l ? t->l->siz : 0)) {
insertAt(t->l, p, x);
} else {
insertAt(t->r, p - 1 - (t->l ? t->l->siz : 0), x);
}
pull(t);
}

Node *merge(Node *a, Node *b) {
if (!a) {
return b;
}
if (!b) {
return a;
}

if (a->w < b->w) {
a->r = merge(a->r, b);
pull(a);
return a;
} else {
b->l = merge(a, b->l);
pull(b);
return b;
}
}

int query(Node *t, int v) {
if (!t) {
return 0;
}
if (t->sum.imp < v) {
return t->siz;
}
int res = query(t->r, v);
if (res != (t->r ? t->r->siz : 0)) {
return res;
}
if (t->info.imp > v) {
return res;
}
return res + 1 + query(t->l, v);
}

void dfs(Node *t) {
if (!t) {
return;
}
dfs(t->l);
std::cout << t->info.id << " ";
dfs(t->r);
}

2023-07-31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
struct Node {
Node *l = nullptr;
Node *r = nullptr;
int cnt = 0;
int cntnew = 0;
};

Node *add(int l, int r, int x, int isnew) {
Node *t = new Node;
t->cnt = 1;
t->cntnew = isnew;
if (r - l == 1) {
return t;
}
int m = (l + r) / 2;
if (x < m) {
t->l = add(l, m, x, isnew);
} else {
t->r = add(m, r, x, isnew);
}
return t;
}

struct Info {
Node *t = nullptr;
int psum = 0;
bool rev = false;
};

void pull(Node *t) {
t->cnt = (t->l ? t->l->cnt : 0) + (t->r ? t->r->cnt : 0);
t->cntnew = (t->l ? t->l->cntnew : 0) + (t->r ? t->r->cntnew : 0);
}

std::pair<Node *, Node *> split(Node *t, int l, int r, int x, bool rev) {
if (!t) {
return {t, t};
}
if (x == 0) {
return {nullptr, t};
}
if (x == t->cnt) {
return {t, nullptr};
}
if (r - l == 1) {
Node *t2 = new Node;
t2->cnt = t->cnt - x;
t->cnt = x;
return {t, t2};
}
Node *t2 = new Node;
int m = (l + r) / 2;
if (!rev) {
if (t->l && x <= t->l->cnt) {
std::tie(t->l, t2->l) = split(t->l, l, m, x, rev);
t2->r = t->r;
t->r = nullptr;
} else {
std::tie(t->r, t2->r) = split(t->r, m, r, x - (t->l ? t->l->cnt : 0), rev);
}
} else {
if (t->r && x <= t->r->cnt) {
std::tie(t->r, t2->r) = split(t->r, m, r, x, rev);
t2->l = t->l;
t->l = nullptr;
} else {
std::tie(t->l, t2->l) = split(t->l, l, m, x - (t->r ? t->r->cnt : 0), rev);
}
}
pull(t);
pull(t2);
return {t, t2};
}

Node *merge(Node *t1, Node *t2, int l, int r) {
if (!t1) {
return t2;
}
if (!t2) {
return t1;
}
if (r - l == 1) {
t1->cnt += t2->cnt;
t1->cntnew += t2->cntnew;
delete t2;
return t1;
}
int m = (l + r) / 2;
t1->l = merge(t1->l, t2->l, l, m);
t1->r = merge(t1->r, t2->r, m, r);
delete t2;
pull(t1);
return t1;
}

09 - 分数四则运算(Frac)

2023-04-23

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
template<class T>
struct Frac {
T num;
T den;
Frac(T num_, T den_) : num(num_), den(den_) {
if (den < 0) {
den = -den;
num = -num;
}
}
Frac() : Frac(0, 1) {}
Frac(T num_) : Frac(num_, 1) {}
explicit operator double() const {
return 1. * num / den;
}
Frac &operator+=(const Frac &rhs) {
num = num * rhs.den + rhs.num * den;
den *= rhs.den;
return *this;
}
Frac &operator-=(const Frac &rhs) {
num = num * rhs.den - rhs.num * den;
den *= rhs.den;
return *this;
}
Frac &operator*=(const Frac &rhs) {
num *= rhs.num;
den *= rhs.den;
return *this;
}
Frac &operator/=(const Frac &rhs) {
num *= rhs.den;
den *= rhs.num;
if (den < 0) {
num = -num;
den = -den;
}
return *this;
}
friend Frac operator+(Frac lhs, const Frac &rhs) {
return lhs += rhs;
}
friend Frac operator-(Frac lhs, const Frac &rhs) {
return lhs -= rhs;
}
friend Frac operator*(Frac lhs, const Frac &rhs) {
return lhs *= rhs;
}
friend Frac operator/(Frac lhs, const Frac &rhs) {
return lhs /= rhs;
}
friend Frac operator-(const Frac &a) {
return Frac(-a.num, a.den);
}
friend bool operator==(const Frac &lhs, const Frac &rhs) {
return lhs.num * rhs.den == rhs.num * lhs.den;
}
friend bool operator!=(const Frac &lhs, const Frac &rhs) {
return lhs.num * rhs.den != rhs.num * lhs.den;
}
friend bool operator<(const Frac &lhs, const Frac &rhs) {
return lhs.num * rhs.den < rhs.num * lhs.den;
}
friend bool operator>(const Frac &lhs, const Frac &rhs) {
return lhs.num * rhs.den > rhs.num * lhs.den;
}
friend bool operator<=(const Frac &lhs, const Frac &rhs) {
return lhs.num * rhs.den <= rhs.num * lhs.den;
}
friend bool operator>=(const Frac &lhs, const Frac &rhs) {
return lhs.num * rhs.den >= rhs.num * lhs.den;
}
friend std::ostream &operator<<(std::ostream &os, Frac x) {
T g = std::gcd(x.num, x.den);
if (x.den == g) {
return os << x.num / g;
} else {
return os << x.num / g << "/" << x.den / g;
}
}
};

10 - 线性基(Basis)

2023-12-03

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
struct Basis {
int a[20] {};
int t[20] {};

Basis() {
std::fill(t, t + 20, -1);
}

void add(int x, int y = 1E9) {
for (int i = 0; i < 20; i++) {
if (x >> i & 1) {
if (y > t[i]) {
std::swap(a[i], x);
std::swap(t[i], y);
}
x ^= a[i];
}
}
}

bool query(int x, int y = 0) {
for (int i = 0; i < 20; i++) {
if ((x >> i & 1) && t[i] >= y) {
x ^= a[i];
}
}
return x == 0;
}
};

五、字符串

01A - 马拉车(Manacher 旧版)

2023-05-14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
std::vector<int> manacher(std::string s) {
std::string t = "#";
for (auto c : s) {
t += c;
t += '#';
}
int n = t.size();
std::vector<int> r(n);
for (int i = 0, j = 0; i < n; i++) {
if (2 * j - i >= 0 && j + r[j] > i) {
r[i] = std::min(r[2 * j - i], j + r[j] - i);
}
while (i - r[i] >= 0 && i + r[i] < n && t[i - r[i]] == t[i + r[i]]) {
r[i] += 1;
}
if (i + r[i] > j + r[j]) {
j = i;
}
}
return r;
}

01B - 马拉车(Manacher 新版)

2024-04-14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
std::vector<int> manacher(std::vector<int> s) {
std::vector<int> t{0};
for (auto c : s) {
t.push_back(c);
t.push_back(0);
}
int n = t.size();
std::vector<int> r(n);
for (int i = 0, j = 0; i < n; i++) {
if (2 * j - i >= 0 && j + r[j] > i) {
r[i] = std::min(r[2 * j - i], j + r[j] - i);
}
while (i - r[i] >= 0 && i + r[i] < n && t[i - r[i]] == t[i + r[i]]) {
r[i] += 1;
}
if (i + r[i] > j + r[j]) {
j = i;
}
}
return r;
}

02 - Z函数

2023-08-11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
std::vector<int> zFunction(std::string s) {
int n = s.size();
std::vector<int> z(n + 1);
z[0] = n;
for (int i = 1, j = 1; i < n; i++) {
z[i] = std::max(0, std::min(j + z[j] - i, z[i - j]));
while (i + z[i] < n && s[z[i]] == s[i + z[i]]) {
z[i]++;
}
if (i + z[i] > j + z[j]) {
j = i;
}
}
return z;
}

03 - 后缀数组(SA)

2023-03-14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
struct SuffixArray {
int n;
std::vector<int> sa, rk, lc;
SuffixArray(const std::string &s) {
n = s.length();
sa.resize(n);
lc.resize(n - 1);
rk.resize(n);
std::iota(sa.begin(), sa.end(), 0);
std::sort(sa.begin(), sa.end(), [&](int a, int b) {return s[a] < s[b];});
rk[sa[0]] = 0;
for (int i = 1; i < n; ++i)
rk[sa[i]] = rk[sa[i - 1]] + (s[sa[i]] != s[sa[i - 1]]);
int k = 1;
std::vector<int> tmp, cnt(n);
tmp.reserve(n);
while (rk[sa[n - 1]] < n - 1) {
tmp.clear();
for (int i = 0; i < k; ++i)
tmp.push_back(n - k + i);
for (auto i : sa)
if (i >= k)
tmp.push_back(i - k);
std::fill(cnt.begin(), cnt.end(), 0);
for (int i = 0; i < n; ++i)
++cnt[rk[i]];
for (int i = 1; i < n; ++i)
cnt[i] += cnt[i - 1];
for (int i = n - 1; i >= 0; --i)
sa[--cnt[rk[tmp[i]]]] = tmp[i];
std::swap(rk, tmp);
rk[sa[0]] = 0;
for (int i = 1; i < n; ++i)
rk[sa[i]] = rk[sa[i - 1]] + (tmp[sa[i - 1]] < tmp[sa[i]] || sa[i - 1] + k == n || tmp[sa[i - 1] + k] < tmp[sa[i] + k]);
k *= 2;
}
for (int i = 0, j = 0; i < n; ++i) {
if (rk[i] == 0) {
j = 0;
} else {
for (j -= j > 0; i + j < n && sa[rk[i] - 1] + j < n && s[i + j] == s[sa[rk[i] - 1] + j]; )
++j;
lc[rk[i] - 1] = j;
}
}
}
};

04A - 后缀自动机(SuffixAutomaton 旧版)

2022-08-17

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
struct SuffixAutomaton {
static constexpr int ALPHABET_SIZE = 26, N = 5e5;
struct Node {
int len;
int link;
int next[ALPHABET_SIZE];
Node() : len(0), link(0), next{} {}
} t[2 * N];
int cntNodes;
SuffixAutomaton() {
cntNodes = 1;
std::fill(t[0].next, t[0].next + ALPHABET_SIZE, 1);
t[0].len = -1;
}
int extend(int p, int c) {
if (t[p].next[c]) {
int q = t[p].next[c];
if (t[q].len == t[p].len + 1)
return q;
int r = ++cntNodes;
t[r].len = t[p].len + 1;
t[r].link = t[q].link;
std::copy(t[q].next, t[q].next + ALPHABET_SIZE, t[r].next);
t[q].link = r;
while (t[p].next[c] == q) {
t[p].next[c] = r;
p = t[p].link;
}
return r;
}
int cur = ++cntNodes;
t[cur].len = t[p].len + 1;
while (!t[p].next[c]) {
t[p].next[c] = cur;
p = t[p].link;
}
t[cur].link = extend(p, c);
return cur;
}
};

04B - 后缀自动机(SAM 新版)

2023-05-27

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
struct SAM {
static constexpr int ALPHABET_SIZE = 26;
struct Node {
int len;
int link;
std::array<int, ALPHABET_SIZE> next;
Node() : len{}, link{}, next{} {}
};
std::vector<Node> t;
SAM() {
init();
}
void init() {
t.assign(2, Node());
t[0].next.fill(1);
t[0].len = -1;
}
int newNode() {
t.emplace_back();
return t.size() - 1;
}
int extend(int p, int c) {
if (t[p].next[c]) {
int q = t[p].next[c];
if (t[q].len == t[p].len + 1) {
return q;
}
int r = newNode();
t[r].len = t[p].len + 1;
t[r].link = t[q].link;
t[r].next = t[q].next;
t[q].link = r;
while (t[p].next[c] == q) {
t[p].next[c] = r;
p = t[p].link;
}
return r;
}
int cur = newNode();
t[cur].len = t[p].len + 1;
while (!t[p].next[c]) {
t[p].next[c] = cur;
p = t[p].link;
}
t[cur].link = extend(p, c);
return cur;
}
int extend(int p, char c, char offset = 'a') {
return extend(p, c - offset);
}

int next(int p, int x) {
return t[p].next[x];
}

int next(int p, char c, char offset = 'a') {
return next(p, c - 'a');
}

int link(int p) {
return t[p].link;
}

int len(int p) {
return t[p].len;
}

int size() {
return t.size();
}
};

05 - 回文自动机(PAM)

2023-05-19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
struct PAM {
static constexpr int ALPHABET_SIZE = 28;
struct Node {
int len;
int link;
int cnt;
std::array<int, ALPHABET_SIZE> next;
Node() : len{}, link{}, cnt{}, next{} {}
};
std::vector<Node> t;
int suff;
std::string s;
PAM() {
init();
}
void init() {
t.assign(2, Node());
t[0].len = -1;
suff = 1;
s.clear();
}
int newNode() {
t.emplace_back();
return t.size() - 1;
}

bool add(char c, char offset = 'a') {
int pos = s.size();
s += c;
int let = c - offset;
int cur = suff, curlen = 0;

while (true) {
curlen = t[cur].len;
if (pos - 1 - curlen >= 0 && s[pos - 1 - curlen] == s[pos])
break;
cur = t[cur].link;
}
if (t[cur].next[let]) {
suff = t[cur].next[let];
return false;
}

int num = newNode();
suff = num;
t[num].len = t[cur].len + 2;
t[cur].next[let] = num;

if (t[num].len == 1) {
t[num].link = 1;
t[num].cnt = 1;
return true;
}

while (true) {
cur = t[cur].link;
curlen = t[cur].len;
if (pos - 1 - curlen >= 0 && s[pos - 1 - curlen] == s[pos]) {
t[num].link = t[cur].next[let];
break;
}
}

t[num].cnt = 1 + t[t[num].link].cnt;

return true;
}
};

PAM pam;

06A - AC自动机(AC 旧版)

2021-07-07

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
constexpr int N = 3e5 + 30, A = 26;

struct Node {
int fail;
int sum;
int next[A];
Node() : fail(-1), sum(0) {
std::memset(next, -1, sizeof(next));
}
} node[N];

int cnt = 0;
int bin[N];
int nBin = 0;

int newNode() {
int p = nBin > 0 ? bin[--nBin] : cnt++;
node[p] = Node();
return p;
}

struct AC {
std::vector<int> x;
AC(AC &&a) : x(std::move(a.x)) {}
AC(std::vector<std::string> s, std::vector<int> w) {
x = {newNode(), newNode()};
std::fill(node[x[0]].next, node[x[0]].next + A, x[1]);
node[x[1]].fail = x[0];

for (int i = 0; i < int(s.size()); i++) {
int p = x[1];
for (int j = 0; j < int(s[i].length()); j++) {
int c = s[i][j] - 'a';
if (node[p].next[c] == -1) {
int u = newNode();
x.push_back(u);
node[p].next[c] = u;
}
p = node[p].next[c];
}
node[p].sum += w[i];
}

std::queue<int> que;
que.push(x[1]);
while (!que.empty()) {
int u = que.front();
que.pop();
node[u].sum += node[node[u].fail].sum;
for (int c = 0; c < A; c++) {
if (node[u].next[c] == -1) {
node[u].next[c] = node[node[u].fail].next[c];
} else {
node[node[u].next[c]].fail = node[node[u].fail].next[c];
que.push(node[u].next[c]);
}
}
}
}
~AC() {
for (auto p : x) {
bin[nBin++] = p;
}
}
i64 query(const std::string &s) const {
i64 ans = 0;
int p = x[1];
for (int i = 0; i < int(s.length()); i++) {
int c = s[i] - 'a';
p = node[p].next[c];
ans += node[p].sum;
}
return ans;
}
};

06B - AC自动机(AhoCorasick 新版)

2023-04-07

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
struct AhoCorasick {
static constexpr int ALPHABET = 26;
struct Node {
int len;
int link;
std::array<int, ALPHABET> next;
Node() : link{}, next{} {}
};

std::vector<Node> t;

AhoCorasick() {
init();
}

void init() {
t.assign(2, Node());
t[0].next.fill(1);
t[0].len = -1;
}

int newNode() {
t.emplace_back();
return t.size() - 1;
}

int add(const std::vector<int> &a) {
int p = 1;
for (auto x : a) {
if (t[p].next[x] == 0) {
t[p].next[x] = newNode();
t[t[p].next[x]].len = t[p].len + 1;
}
p = t[p].next[x];
}
return p;
}

int add(const std::string &a, char offset = 'a') {
std::vector<int> b(a.size());
for (int i = 0; i < a.size(); i++) {
b[i] = a[i] - offset;
}
return add(b);
}

void work() {
std::queue<int> q;
q.push(1);

while (!q.empty()) {
int x = q.front();
q.pop();

for (int i = 0; i < ALPHABET; i++) {
if (t[x].next[i] == 0) {
t[x].next[i] = t[t[x].link].next[i];
} else {
t[t[x].next[i]].link = t[t[x].link].next[i];
q.push(t[x].next[i]);
}
}
}
}

int next(int p, int x) {
return t[p].next[x];
}

int next(int p, char c, char offset = 'a') {
return next(p, c - 'a');
}

int link(int p) {
return t[p].link;
}

int len(int p) {
return t[p].len;
}

int size() {
return t.size();
}
};

06C - AC自动机(AhoCorasick 新新版)

2024-04-09

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
struct AhoCorasick {
static constexpr int ALPHABET = 26;
struct Node {
int len;
int link;
std::array<int, ALPHABET> next;
Node() : len{0}, link{0}, next{} {}
};

std::vector<Node> t;

AhoCorasick() {
init();
}

void init() {
t.assign(2, Node());
t[0].next.fill(1);
t[0].len = -1;
}

int newNode() {
t.emplace_back();
return t.size() - 1;
}

int add(const std::string &a) {
int p = 1;
for (auto c : a) {
int x = c - 'a';
if (t[p].next[x] == 0) {
t[p].next[x] = newNode();
t[t[p].next[x]].len = t[p].len + 1;
}
p = t[p].next[x];
}
return p;
}

void work() {
std::queue<int> q;
q.push(1);

while (!q.empty()) {
int x = q.front();
q.pop();

for (int i = 0; i < ALPHABET; i++) {
if (t[x].next[i] == 0) {
t[x].next[i] = t[t[x].link].next[i];
} else {
t[t[x].next[i]].link = t[t[x].link].next[i];
q.push(t[x].next[i]);
}
}
}
}

int next(int p, int x) {
return t[p].next[x];
}

int link(int p) {
return t[p].link;
}

int len(int p) {
return t[p].len;
}

int size() {
return t.size();
}
};

07 - 随机生成模底 字符串哈希(例题)

2022-06-09

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#include <bits/stdc++.h>

using i64 = long long;

bool isprime(int n) {
if (n <= 1) {
return false;
}
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) {
return false;
}
}
return true;
}

int findPrime(int n) {
while (!isprime(n)) {
n++;
}
return n;
}

using Hash = std::array<int, 2>;

int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);

std::mt19937 rng(std::chrono::steady_clock::now().time_since_epoch().count());

const int P = findPrime(rng() % 900000000 + 100000000);

std::string s, x;
std::cin >> s >> x;

int n = s.length();
int m = x.length();

std::vector<int> h(n + 1), p(n + 1);
for (int i = 0; i < n; i++) {
h[i + 1] = (10LL * h[i] + s[i] - '0') % P;
}
p[0] = 1;
for (int i = 0; i < n; i++) {
p[i + 1] = 10LL * p[i] % P;
}

auto get = [&](int l, int r) {
return (h[r] + 1LL * (P - h[l]) * p[r - l]) % P;
};

int px = 0;
for (auto c : x) {
px = (10LL * px + c - '0') % P;
}

for (int i = 0; i <= n - 2 * (m - 1); i++) {
if ((get(i, i + m - 1) + get(i + m - 1, i + 2 * m - 2)) % P == px) {
std::cout << i + 1 << " " << i + m - 1 << "\n";
std::cout << i + m << " " << i + 2 * m - 2 << "\n";
return 0;
}
}

std::vector<int> z(m + 1), f(n + 1);
z[0] = m;

for (int i = 1, j = -1; i < m; i++) {
if (j != -1) {
z[i] = std::max(0, std::min(j + z[j] - i, z[i - j]));
}
while (z[i] + i < m && x[z[i]] == x[z[i] + i]) {
z[i]++;
}
if (j == -1 || i + z[i] > j + z[j]) {
j = i;
}
}
for (int i = 0, j = -1; i < n; i++) {
if (j != -1) {
f[i] = std::max(0, std::min(j + f[j] - i, z[i - j]));
}
while (f[i] + i < n && f[i] < m && x[f[i]] == s[f[i] + i]) {
f[i]++;
}
if (j == -1 || i + f[i] > j + f[j]) {
j = i;
}
}

for (int i = 0; i + m <= n; i++) {
int l = std::min(m, f[i]);

for (auto j : { m - l, m - l - 1 }) {
if (j <= 0) {
continue;
}
if (j <= i && (get(i - j, i) + get(i, i + m)) % P == px) {
std::cout << i - j + 1 << " " << i << "\n";
std::cout << i + 1 << " " << i + m << "\n";
return 0;
}
if (i + m + j <= n && (get(i, i + m) + get(i + m, i + m + j)) % P == px) {
std::cout << i + 1 << " " << i + m << "\n";
std::cout << i + m + 1 << " " << i + m + j << "\n";
return 0;
}
}
}

return 0;
}